ISSN 2500-4263

JIECHBIE OKOCHUCTEMbI

B YCJIOBUAX UBSMEHEHUA KIIMMATA:

BUOJOI'MYECKAS MPOAYKTUBHOCTH U JUCTAHIIMOHHBIF MOHUTOPUHT

MedswcoynapooHwlti cOOpHuK HaAyuHbIX cmametl

FOREST ECOSYSTEMS UNDER CLIMATE CHANGE:

BIOLOGICAL PRODUCTIVITY AND REMOTE MONITORING

International Compendium of research papers

Momkap-Oma
2020



ISSN 2500-4263

MHHUCTEPCTBO HAVKHU U BBICIIIET'O OBPA30OBAHUS POCCUNCKON ®EJIEPAIIN
®I'BOY BO «TOBOJIKCKHUM I'OCYJAPCTBEHHbBIN
TEXHOJIOTUYECKUI YHUBEPCUTET»

LIEHTP YCTOMYMBOI'O YIIPABJIEHUSA U JIUCTAHILIMOHHOI' O
MOHUTOPHHI'A JIECOB

JIECHBIE OKOCHUCTEMbI

B YCJIIOBUAX USMEHEHUA KIMMATA:

BUOJOTMYECKAS MPOAYKTUBHOCTH U JIJUCTAHIIMOHHBI MOHUTOPHUHT

Meorcoynapoonvlii coOOpHux HayuHvlx cmamet

FOREST ECOSYSTEMS UNDER CLIMATE CHANGE:

BIOLOGICAL PRODUCTIVITY AND REMOTE MONITORING

International Compendium of research papers

Momrkap-Oma
2020



VIIK 630
BBK 43:20.18
71 50

PenaknmnoHHasi KOJJIerus:
3. A. Kypbanoe, n-p. c.-x. Hayk, npodeccop, [I0BOIKCKUI TOCY1apCTBEHHBIA TEXHOJIOTHYESCKUI
YHUBEPCUTET (OTB. PEAAKTOP)
C. A. bapmanes, n-p TexH. HayK, npodeccop, MHCTUTYT KocMuueckux ucciaeaopanuii PAH
C. H. Yymauenko, n-p 6uon. Hayk, npodeccop, MertuimuHckuii punmmar MOCKOBCKOTO rocyaap-
CTBEHHOT'0 TEXHMUYECKOro yHusepcurera uM. H. O. baymana
B. K. Xnocmos, 1-p c.-X. Hayk, nnpoeccop, Poccuiickuil rocyaapcTBeHHBINH arpapHblil yHUBEPCH-
teT - MCXA umenu K. A. Tumupsizesa
O. H. Bopooves, xauj. c.-X. HayK, JAOLEHT, [I0BOKCKMII TOCYTapCTBEHHBIN TEXHOJIOTMUYECKUN
YHHUBEPCUTET
D.A. Tepexun, xauJ. reorp. HayK, AOLEHT . benropoackuii rocynapct BeHHBIN YHUBEPCUT €T
J-p Hoannuc I'umac, npodeccop, naboparopus JIeCOYIpaBIeHUs U AUCTAHIIMOHHOTO 30HIUPOBa-
Husl, YHuBepcuteT Apuctorens (r. Canonuku, ['perns)
J-p Hla I[3unbmun, npodeccop, mupextop Kuraiicko-EBponeiickoro 1eHTpa yrpaBieHUs OKPY-
JKarome cpeoi u manamadTomM
/-p Abpaxam Tomac, merenxep B 001aCTH TUCTAHIIMOHHOTO 30HpoBaHus, COBET IO HayKe O
3emie
J-p I[3unbasan Bane, npodeccop, KOIEIK Typu3Ma U reorpadpudeckux Hayk, KOHbHAHBCKUI TTe-
JArOrMYeCKUi YHUBEPCUTET

JlecHble 3kocuCTeMBbI B YCJIOBHAIX H3MEHEHHS KJIUMAaTa: OHoJI0ornyeckasi NpoAyKTUBHOCTb
JI50 M IMCTAHUMOHHBI MOHUTOPHHI: MEXIyHapOJIHbIM COOpHMK Hay4dyHBIX cTaTed / OTB. pen.
npod. D.A. KypbanoB. — Tekct: anektpoHHbIi.— Momkap-Ona: [ToBomkckuil rocy1apcTBEHHbBIN

TexHosornueckuit ynusepcuter, 2020. — 174 c. — URL: https://inter.volgatech.net/centre-for-
sustainable-management-and-remote-monitoring-of-forests/forest-ecosystems-in-a-changing-
climate/

OcHOBY COOpHHKA COCTaBHJIM MaTepUaibl MEXIyHAPOJHON HaydyHOW KoH(pepeHuHu «JlecHble
9KOCUCTEMBI B YCIIOBUSAX MU3MEHEHHs KIMMaTa: PETMOHAIBHBIE U MEKIYHApPOJHBIE aCIEKThI», LIEIb
KOTOPOH — 0OMEH Hay4HbIM M MPAKTUYECKHM OIBITOM MEXAY YUYEHBIMH, MIPEoiaBaTe/IsIMH, Hay4-
HBIMU COTPYJHUKAMU BY30B M HAyYHBIX OpPTaHU3alMNi U 00bEeIMHEHUE YCUINN AJIsl pa3BUTHS Iep-
CHEKTUBHBIX HalpaBleHUI HayKH B 00JaCTH JIECHOTO XO3sIIICTBa U HKOJIOTUH.

YK 630
bBK 43:20.18

ISSN 2500-4263 © IToBOMKCKHI TOCYAAPCTBEHHBIM
TEXHOJOTHUYECKU yHuBepcuTeT, 2020

© lleHTp yCTOMYMBOIO yNpaBICHUS

U TUCTAHIIMOHHOI'O MOHUTOPHUHTA JiecoB, 2020


http://www.timacad.ru/catalog/pps/detail.php?ID=1630

UDC 630
BBK 43:20.18

F75

Editorial board:

E.A. Kurbanov, Doctor of Agricultural Sciences, Professor, Volga State University of Tech-
nology

S.A. Bartalyov, Doctor of Engineering Science, Professor, Space Research Institute of Russian
Academy of Sciences

S.I. Chumachenko, Doctor of Biological Sciences, Professor, Mytishchi Branch, Bauman Mos-
cow State Technical University

V.K. Khlyustov, Doctor of Agricultural Sciences, Professor, Russian State Agrarian Universi-
ty - Moscow Timiryazev Agricultural Academy

O.N. Vorobiev, Ph.D., Associate Professor, Volga State University of Technology

E.A. Terekhin, Ph. D, Associate Professor, Belgorod State University

Dr. Ioannis Gitas, Professor, Laboratory of Forest Management and Remote Sensing of the
Aristotle University of Thessaloniki

Dr. Sha Jinming, Director China-Europe Center for Environment and Landscape Management,
College of Geography, Fujian Normal University

Dr. Abraham Thomas, Competency Manager of Remote Sensing, Counsil for Geoscience

Dr. Jinliang Wang, Professor, College of Tourism & Geographic Sciences, Yunnan Normal
University

Forest ecosystems under climate change: biological productivity and remote monitoring :
compendium of research papers / Executive editor Prof. E.A. Kurbanov. — Text: electronic. —
Yoshkar-Ola: Volga State University of Technology, 2020. — 174 p. — URL: https://
inter.volgatech.net/centre-for-sustainable-management-and-remote-monitoring-of-forests/forest-
ecosystems-in-a-changing-climate/

The purpose of the International Compendium of Research Papers "Forest ecosystems under cli-
mate change: biological productivity and remote monitoring" is the exchange of expertise be-
tween research staff of universities and R&D organizations .

UDC 630
BBK 43:20.18

ISSN 2500-4263 © Volga State University
of Technology, 2020

© Center of Sustainable forest management

and Remote sensing , 2020



ACKNOWLEDGEMENT

The Jean Monnet Center of Excellence “European Expertise and Technology for Environmental
Protection and Sustainable Forestry (SUFEX)” and project «GIS and Remote Sensing for Sustaina-
ble Forestry and Ecology (SUFOGIS)» at Volga State University of Technology has been funded
with support from the EU ERASMUS+ program.

The European Commission support for the production of this publication does not constitute an
endorsement of the contents which reflects the views only of the authors, and the Commission can-
not be held responsible for any use which may be made of the information contained therein.

Lentp coBepmercTBa XKana Monne «EBpomneiickas sKcriepTr3a U TEXHOJIOTHH B 00JIaCTH 3allH-
Thl OKpY>Karolleil cpenbl 1 ycToitunporo JiecoBoactBa (SUFEX)» u mpoekt «I'eonHpopmannoHHble
CUCTEMBI U TUCTAaHIIMOHHOE 30HIMPOBAHNE 3EMIIN JUIsl yCTOMYNBOIO JIECOIIOJIB30BAHNS U 3KOJIOTUU
(SUFOGIS)» B I1oBOMKCKOM roCyIapCTBEHHOM TEXHOJIOIMYECKOM YHMBEPCHUTETE IMOJIYy4MIId (PU-
HaHCOBYIO noanepkky Esponeiickoro Coro3a.

Copepxanue COOpHHMKA OTpa)kaeéT TOYKY 3pEHHUsl TOJIbKO €€ aBTOpoB. lcrosHuTenbHOE
areHTCTBO IO BOIPOCaM 00pa30BaHUs, ayAHMOBU3YaJbHON AEATEIBHOCTH U KyIbTyphl U EBpomeii-
ckast Komuicenst He HECyT OTBETCTBEHHOCTH 3a JII000€ MCIOIb30BaHNE HHPOPMALIUH, COAEpIKAIICH-
Csl B 9TOU IMyOJIMKAIIUK.

Co-funded by the
Erasmus+ Programme
of the European Union

SUFEX

Jean Monnet
Center of Excellence




MAPPING OF LAND USE / LAND COVER OF KLERKSDORP-ORKNEY-
STILFONTEIN-HARTEBEESTFONTEIN (KOSH) REGION
FOR THE YEARS 2020 AND 2019 USING SENTINEL-2 DATA

Abraham Thomas
Council for Geoscience, Pretoria 0184, South Africa.

The article presents mapping of current land use / land cover and of year 2019 of Klerksdorp—Orkney—
Stilfontein—Hartebeestfontein (KOSH) region using Sentinel-2 data. This study made use of VNIR bands of
Sentinel-2 acquired on 10 March 2020, 16 March 2019 and National Land Cover (NLC) dataset of year
2018 to investigate how land use change and vegetation alteration has occurred during 2018 to 2020. The
Level 1 Sentinel-2 data were pre-processed to obtain ground reflectance using Sen2Cor algorithm. The
classification system of NLC 2018 was used for identifying the training sites for 56 classes present. Further
processing to produce intended classes and post processing of classification products were performed us-
ing Geomatica Object Analyst. The analysis involved image segmentation, attribute calculation for geomet-
rical parameters, mean, standard deviation and 10 vegetation indices of pixels covered in segments of
VNIR bands, training site selection, classification and post classification analysis. Though attempts were
made to classify the images with training sites and different attributes, the best classification result was
obtained with standard deviation of 4 VNIR bands and 10 vegetation indices. For classifying March 2019
image, the batch classification algorithm was applied using training model file generated for classification
of March 2020 data. The percentage of total area covered by five major classes for the years 2020 and
2019 respectively are: grasslands - 49.32% & 42.14%, temporary crops (rainfed) - 32.90% & 32.92%;
open woodland — 4.00% & 3.03%, mine waste (tailings) and resource dumps — 1.96% &2.46%; residential
formal (grass) — 1.53% & 1.46%.

Keywords: remote sensing, Sentinel-2, KOSH, land use / land cover dynamics, Object Analyst, classifi-
cation.

Introduction

Knowledge of land cover and land use change is necessary in order to model the earth system
and its environments (for example by studying aspects such as hydrological processes and climate
change) and for many purposes related to land and natural resource management. The study of
land cover change is quite important because of its impacts on local climate, hydrology, radiation
balance, and the diversity and abundance of terrestrial species (Boriah et al., 2008). Most (80%) of
the land cover in South Africa is natural or semi-natural, and monitoring and projecting changes in
land cover is vital for proper management and development of its geographical areas and sustaina-
ble utilisation of the natural resources. Mining and agricultural practices are major human activi-
ties on the land in South Africa. The change of land cover due to mining and associated develop-
ment in the area (changes in land use / land cover due to human activities that are linked to min-
ing) has resulted in significant changes in climate and the environment (for example changes in the
catchment hydrology resulting in increased surface runoff in certain areas and associated pollution
and also depletion of surface water resources due to reduction of natural infiltration and ground
water recharge).

South Africa has a mining history of more than 100 years. Today the South African mining in-
dustry still is a key sector to the economy with a contribution of 8% to the national GDP, even
with the substantial decline of the gold mining in the Witwatersrand basin, as new mineral deposit
types are being developed and exploited. However, the remnants of mining still exist today in the
form of large tailings sites and underground shafts throughout the major mining areas in Gauteng,
the North West and Free-State provinces, near the densely populated cities of the Gauteng Metro-
politan Region. Even this post-mining landscape is very dynamic. Old tailings dam sites are being
reprocessed, as new technologies become available, or rising commodity prices favour the extrac-
tion of leftover value. The problems that may be attributed to such a dynamic mining and post-
mining landscape are for example the generation of acid mine drainage, metal transport in surface
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water and groundwater, e.g., iron precipitation in water bodies, major subsidence and migration of
tailings material to the neighbouring settlements. These may dramatically affect the existing natu-
ral cover, land use practices and the lives of the people in such a mining area, where the former
settlements of the mineworkers have grown into these large economically thriving urban centres,
which attracts people from rural parts of South Africa. The land-use in these population centres,
e.g. for recreation, farming, and housing, conflicts with the future, current and former usage of the
land by the mineral resource industry. The above listed problems and conflict faced in the country
due to changes in land use practices / land cover severely affects the environment in complex
ways, leading to complex situations that impact the ecological security for sustainable develop-
ment/generation.

Freely available remote sensing datasets made available through optical satellites such as Ad-
vanced Space-borne Thermal Emission and Reflection (ASTER) radiometer, Landsat and Sentinel-
2 are being widely used in land cover studies and monitoring as they aid in discriminating various
land covers and land uses. This study aimed to conduct environmental monitoring and assessment
of the current (year 2020) land use / land cover and one year ago (year 2019) of Klerksdorp—
Orkney—Stilfontein—Hartebeestfontein or KOSH using geospatial technologies and remote sensing,
using optical data from Sentinel-2 satellite. This research intended to make use of existing satellite-
based land-cover products, recent satellite data to investigate how land use change and vegetation
disturbances has altered during 2018 to 2020.

Presented here are the results obtained from different remote sensing data processing & anal-
yses conducted on Sentinel-2 data covering the Klerksdorp—Orkney—Stilfontein—Hartebeestfontein
(KOSH) region acquired in March 2020 and March 2019 using different tools available in SNAP
and Geomatica software (using Object Analyst module) and their usefulness to aid in understand-
ing the current land use / land cover classes and their dynamics.

Area of research and its characteristics

The area chosen initially for the environmental monitoring is the Klerksdorp—Orkney—
Stilfontein—Hartebeestfontein (KOSH) region in the Northwest Province of South Africa, covering
an area of 2755 km?” and falling within the Vaal River catchment (fig. 1). The KOSH area is locat-
ed approximately 160 km southwest of Johannesburg. The Vaal River flows through the south-
eastern part of the KOSH region. The majority of the KOSH area has a sandy loam soil texture
with an undulating relief, whereas the relief of the region south of Orkney is flat (Midgley, Pitman
and Middleton, 1994). The KOSH region forms part of the Witwatersrand gold mining region, in-
cluding the Far East, Central Rand, Western and Far West basins and the Free State gold mines,
and which is at serious risk from acid mine drainage (Mail&Guardian, 2014).

Gold mining operations by a number of different gold mining companies have been undertaken
in the KOSH area since 1950s (SAFLII, 2013). Gold mining entails the construction of shafts, un-
derground tunnels and the excavation of rocks to access gold-bearing ore. Many years of gold min-
ing have resulted in the underground interconnection of all the mines in the KOSH area. The laby-
rinth of interconnecting tunnels, shafts, mined-out areas and natural fissures have created a path-
way through which the underground water flows from the aquifers into the shallower mines and
shafts and from there into the deeper areas. It is an undisputed fact that mining of gold in the
KOSH area over the years has contributed to the drainage of underground water into the mines.
Thus, mining companies are spending huge amounts of money to pump water out of their mines.
The area has a number of sinkholes in the vicinity of Buffelsfontein's Eastern Shaft that have de-
veloped as a result of the lowering of the water table following dewatering (Pulles et al., 2005).
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Fig. 1. Locality map of the KOSH area
Geological background of study area

The KOSH area is underlain mainly by an intercalated assemblage of sedimentary and extrusive
rocks, porous unconsolidated and consolidated sedimentary strata, acid and intermediate intrusive
rocks and basic/mafic lavas (such as dolomite, gold-bearing conglomerates, Black Reef quartzite,
Ventersdorp lavas and dykes) and has shallow aquifers containing uncontaminated water relatively
close to the surface (Midgley et al., 1994).

Materials and methods of research

Data and software used for remote sensing analyses

The satellite data used in this study comprised the Sentinel-2 satellite image having 13 optical
image bands spanning from the Visible and Near Infra-Red (VNIR) and Short Wave Infrared
(SWIR) spectral range having resolutions of 10m, 20 and 60 respectively. Multi Spectral Instru-
ment (MSI) of Sentinel-2 measures the Earth's reflected radiance in 13 spectral bands from VNIR
to SWIR. Sentinel-2 data acquired on 13 spectral bands in the VNIR and SWIR regions has the
following resolutions for its different bands:

o four bands at 10 m: Band 2, Band 3, Band 4, and Band 8.

e six bands at 20 m: Band 5, Band 6, Band 7, Band 8a, Band 11, and Band 12

e three bands at 60 m: Band 1, Band 9, and Band 10.

Recent scenes of Sentinel-2 data covering the study area of KOSH region were searched in the
Copernicus Scientific Data Hub (https://scihub.copernicus.eu/dhus/#/home) and two suitable cloud
free images for the end of summer period (acquired on 10 March 2020 and 16 March 2019) were
identified and downloaded them.



Software used for the analyses

The software used in this study are the following: the Sentinel Application Platform, known as
SNAP Toolbox, developed by the European Space Agency (ESA), PCI Geomatica with its add on
module Object Analyst, ArcGIS and Google Earth Pro. SNAP stands for “SeNtinels Application
Platform™ and it is a fully free and open-source toolbox platform that supports processing of raster
imagery from ESA, Copernicus Sentinel 1/2/3, and many third party satellite missions (ESA-
STEP, 2018). Object Analyst is an add-on package for PCI Geomatica software that provides tools
for segmentation, classification, and feature extraction.

Product type of downloaded Sentinel-2 data

The downloaded Sentinel-2 data is a Level-1C product composed of 100 x 100 km?tiles com-
prising 13 bands (ortho-images) in a UTM projection. Per-pixel radiometric measurements of this
data are provided in Top Of Atmosphere (TOA) reflectance along with the parameters to transform
them into radiances. Level-1C products are resampled with a constant Ground Sampling Distance
(GSD) or resolutions of 10, 20 and 60 m depending on the native resolution of the different spec-
tral bands. As the Level-1C Sentinel -2 has already undergone radiometric and geometric correc-
tion, the main pre-processing required for this data is atmospheric correction to produce ground
surface reflectance.

Initial data processing using SNAP software

The downloaded Sentinel-2 data was imported in SNAP software and processed for atmospher-
ic correction using Sen2Cor software plugin installed in it. Sen2Cor is a processor for Sentinel-2
Level 2A product generation and formatting; it performs the atmospheric-, terrain and cirrus cor-
rection of TOA Level 1C input data. This step converted the Level-1C product type (having top of
the atmosphere reflectance) to Level-2A data having surface reflectance. The Level 2 VNIR bands
were saved in tiff file format. The extent of coverage of the pre-processed VNIR scene acquired on
10 March 2020 is shown in Figure 2. Later, this data set was subsetted for the area of interest cov-
ering the KOSH region using its geo-coordinate bounds (Figure 3). Similarly, the Sentinel-2 scene
acquired on 16 March 2019 was processed to Level 2 and subsetted for the area of KOSH region
(Figure 4). Figure 3 shows the satellite view of the KOSH region as seen through Sentinel-2 on 10
March in RGB: Band 4-Band 3-Band 2. Figure 4 shows the same area as seen through VNIR
bands in RGB: Band 4- Band 3-Band 2 of the same satellite acquired on 16" March 2019.

Other dataset used

Other datasets used in this study are the National Land Cover (NLC) 2018 dataset covering
KOSH having 20 m resolution derived from Sentinel-2 data of year 2017-2018 and Google Earth
Pro Images of different years (mainly years 2018, 2019 and 2020). Figure 5 shows National Land
Cover (NLC) 2018 data extracted for the KOSH region and the legend for this map is shown in
Figure 6. There are 56 land cover types present in the subset of NLC 2018 covering the KOSH re-
gion. The original legend of the dataset has 73 land cover classes. The description of these land
cover classes is given in Thompson (2019).
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Fig. 2. The extent of full scene of Sentinel-2 imagery (VNIR bands in RGB: B4-B3-B2) acquired
on 10 March 2020 overlaid with a polygon covering the extent of KOSH region

SENTINEL-2 VIEW OF KOSH REGION DURING MARCH 2020
VNIR BANDS IN RGB: 4-3-2 OF SENTINEL-2 IMAGERY OF 10 MARCH 2020
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Fig. 3. Subset of Sentinel-2 imagery (VNIR bands in RGB: B4-B3-B2) acquired on 10 March 2020 covering
the extent of KOSH region.
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SENTINEL2 VIEW OF KOSH REGION DURING MARCH 2019
VNIR BANDS IN RGB: 4-3-2 OF SENTINEL-2 IMAGERY OF 16 MARCH 2019 ﬁ
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Fig. 4. Subset of Sentinel-2 imagery (VNIR bands in RGB: B4-B3-B2) acquired on 16 March 2019 covering
the extent of KOSH region
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Fig. 5. The National Land Cover (NLC) 2018 dataset covering the extent of KOSH region
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Fig. 6. Legend of the National Land Cover (NLC) 2018 dataset covering the KOSH region

A visual examination of the VNIR bands of Sentinel-2 data acquired on 10 March 2020 (Figure
3) with 2018 NLC data (Figure 5 ) reveals that there is some change in the extent of some land
covers (e.g. change of grassland to agricultural use) during the last two years.

Image analysis for land use / land cover classification using Geomatica Object Analyst

A simple process flow for object-based image analysis (OBIA) is using Geomatica Object Ana-
lyst involves pre-processing of image, image segmentation, classification and post classification
analysis. As the pre-processing and subsetting were already made using SNAP, the remaining steps
of image segmentation classification and post classification analysis were carried out in Geomatica
software using Object Analyst add on module. The first attempt made was to map land covers for
the KOSH region using Sentinel-2 data acquired on 10 March 2020 based on the classification sys-
tem followed in the National Land Cover (NLC) dataset of 2018 (after identifying 56 classes pre-
sent in the subset of NLC 2018 for KOSH) using the Trial License of Geomatica Object Analyst
module and Sentinel-2 data. The main steps to be followed in the workflow of image classification
using Geomatica Object Analyst are the following: loading and examining input data, segmenta-
tion of the input data into a vector layer for training site generation and image classification, attrib-
ute calculation for image classification, training site editing, selection of classification method:
whether supervised or unsupervised (supervised classification involves selection of the identified
training sites) and post classification editing.

12



Segmentation is the process of extracting discrete regions of image objects from an image. The
segmentation involves creating a vector layer showing boundaries of various objects present in the
area of interest with specified bands of the imagery. The parameter values to be entered for the
segmentation are scale, shape and compactness. The attribute calculation involves calculation of
geometrical parameters (compactness, elongation, circularity and rectangularity), calculation of
mean and standard deviation of the pixels beneath an object from the selected bands and calcula-
tion of vegetation indices attributes (e.g. NDVI, Leaf Area Index etc.). The vegetation indices that
can be calculated using Object Analyst are shown in table 5.

Table 1
Descriptions of each Vegetation Index that can be calculated using Geomatica Object Analyst.

Short

Attribute Description
name
reern'/Re
('f°‘~“-]’§**d GRVI |GRVI = (Green - Red) + (Green + Red)
Vegetation Index
. . GI = ((2.0 x Green) - (Red + Blue)) + ((2.0 x Green) +
Greenness Index Gl

Red + Blue)

Vegetation

VDI = NIR - Red
Difference Index YD ©

Ratio Vegetation

RVI RVI = NIR = Red
Index

Normalized

Difference NDVI NDVI = (NIR - Red) + (NIR + Red)
Vegetation

Transformed

Difference TDVI TDVI = (NIR - Red) =+ (NIR + Red) + .5
Vegetation Index

SAVI = ((NIR - Red) + (NIR + Red + L)) x (1 + L)

Soil Adjusted SAVI

Vegetation Index The L-value is based on the amount of green vegetative cover, L is a default of
0.5, which means, generally, areas of moderate green vegetative cover.

Modified Soil . - . ' )
! MSAVI2 = (0. 2(NIR + 1) - V((2 x NIR + 1) - 8(NIR
Adjusted MSAVI2 (0.5) x (2d 1 =N 1 (

- Red
Vegetation Index )
GEMI = eta x (1 - 0.25 x eta) - ((Red - 0.125) + (1 -
Global Red) )
Environmental GEMI
Monitoring Index Whereeta = (2 x (NIR - Red) + 1.5 x NIR + 0.5 x Red) =

(NIR + Red + 0.5)
LAI = (3.618 = EVI) - 0.118
Leaf Areca Index LAI

Where EVI (Enhanced Vegetation Index) = 2.5 x (NIR -
Red) = (1 + NIR + (6 x Red) - (7.5 x Blue)

Source: PCI-Geomatics (2017).

The task of identifying training sites involves viewing of the image and interpreting the features
present in it and giving proper names for the intended classes from the segmented vector layer.
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The existing NLC 2018 data of KOSH region has 56 land cover classes. While generating training
sites, the description of each such present land cover class was read to identify the corresponding
classes from the image. Other useful data like existing Google Earth Pro imagery of different dates
(since year 2014 and until May 2020) and NLC 2018 were also viewed while identifying the land
cover types and assigning class names to the training site polygons. An example view of training
site identification from zoomed segmented vector layer and zoomed view of Google Earth image
for certain land cover classes are shown in Figure 7. Efforts were made to zoom into the image for
different distant locations and identify at least 20 to 30 training sites for each class for an accurate
classification of the image. Some land cover classes like landfill, bare river bed material and infor-
mal settlement (having trees or bush) have only limited numbers in the area of study for training
site; the only available such sites (sometimes only single site is present) were marked as training
sites. While examining the NLC 2018 data covering the KOSH region for training site identifica-
tion, numerous errors were observed in this classified product. A few example errors observed are
the following types:

e Class 61 Urban Recreational Fields (Grass) is classified as Class 3: Dense woodland (Fig. 8

and Fig. 9).
o Agricultural crop land classified as Class 3: Dense woodland (Fig. 10 and Fig. 11).

(a). Zoomed view of segmented polygons. (b). Google Earth Pro view (27 June 2019).

Figure 7. Zoomed view of segmented polygons from Object Analyst overlaid with Sentinel-2 image of 10
March 2020 (a); Google Earth image of 27 June 2019 for marking training sites (b)

The study area was thoroughly examined in Google Earth Pro along with side by side display-
ing of the satellite image and the existing NLC 2018 dataset. In order to improve the classification
accuracy, more typical patches classes were identified from the segmented vector as training sites.
Any errors seen in the identification of land cover classes of the previously identified training sites
were also edited in this step. The corresponding display colours of the classes of NLC 2018 in
RGB were identified and assigned those colours to each class identified as training site. The as-
signed colours for different land use / land cover classes and the total number of training sites
identified for the supervised classification using Geomatica Object Analyst for the 56 land cover
classes present in the KOSH region based on the classes seen in the NLC 2018 dataset is shown in
figure 12 to figure 14.
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Fig. 8. Class 61: Urban Recreational Fields with
grass (green patch) classified as Class 3: Dense forest confirming errors seen in NLC 2018
& woodland in NLC 2018 (grassy recreation area classified as woodland)

Fig. 10. Error of agricultural crop land classified Fig. 11. Google Earth Pro image confirming
as Class 3: Dense woodland in NLC 2018 errors observed in the classes of NLC 2018
data covering KOSH region (agricultural field area classified as woodland)
Class Name Color | Training Count
19 Adificial Dams / Waterbodies (19) I 66
14 Natural Waterbodies (14) I 90
38 Cultivated Commercial Annuals Pivot Imigated (38) - 588
40 Temporary Crops-ainfed (40) I - 2717
13 Natural Grassland (13) - 1905
4 Open Woodland (4) B4 319
44 Fallow Lands Old Fields_Grass (44) - 773
22 Herbaceous Wetlands (cumrently mapped) (22) - 64
49 Residential Formal (low veg / grass) (49) - 372
6 Open Sparse Planted Forest (6) I 50
5 Contiguous Dense Planted Forest (5) I 56
68 Mines: Surface Infrastructure (68) - 76
69 Mines: Extraction Sites: Open Cast _(uamies combined (69) I 136
71 Mines: Waste (Tailings) Resource Dumps (71) I 1639
67 Roads _Rail (Major Linear) (67) - 166
47 Residential Formal (Tree) (47) - 183
48 Residential Formal (Bush) (48) - 60
3 Dense Forest Woodland (3) . 160
2 Contiguous Low Forest _Thicket (2) . 46
57 Smallholdings (Tree) (57) - 57
58 Smallholdings (Bush) (58) B 45

Fig. 12. Part one of total training sites identified for the KOSH region using Object Analyst for the classifi-
cation of 3 March 2020 Sentinel-2 image
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Class Name Color | Training Count

59 Smallholdings (low veq / grass) (59) - 43
60 Smallholdings (Bare) (60) — 18
50 Residential Fomal (Bare) (50) - 559
7 Temporary Unplanted Forest (7) - 10
8 Low Shrubland (other regions) (8) - 180
12 Sparsely Wooded Grassland (12) e 148
18 Natural Pans fflooded) (18) I - 9

20 Artfficial Sewage Ponds (20) _— . 1

21 Adificial Flooded Mine Pits (21) . - 7

23 Herbaceous Wetlands (previous mapped extent) (23) e 95
25 Natural Rock Surfaces (25) - 52
26 Dry Pans (26) - 10
27 Eroded Lands (27) - 10
30 Bare Riverbed Material (30) - 5

31 Other Bare (31) v 58
32 Cultivated Commercial Permanent Orchards (32) I - 8

39 Cuttivated Commercial Annuals Non-Pivot Imigated (39) I - 306
42 Fallow Land Old Fields (Trees) (42) . - 61

43 Fallow Land Old Fields (Bush) (43) I - 83
45 Fallow Land Old Fields (Bare) (45) — 47
46 Fallow Land Old Fields (Low Shrub) (46) e 66

Fig. 13. Part two of total training sites identified for the KOSH region using Object Analyst
for the classification of 3 March 2020 Sentinel-2 image

Class Name Color | Training Count

51 Residential Informal (Tree) (51) e 8

53 Residential Informal (low veg / grass) (53) . - 54
54 Residential Informal (Bare) (54) - 46
52 Residential Informal (Bush) (52) . 1

55 Village Scattered (55) . 6

56 Village Dense (56) - 15
61 Urban Recreational Fields (Tree) (61) - 44
62 Urban Recreational Fields (Bush) (62) - 23
63 Urban Recreational Fields (Grass) (63) . 165
64 Urban Recreational Fields (Bare) (64) - 18
65 Commercial (65) I - N
66 Industrial (66) I 409
72 Landfills (72) - 1

73 Fallow Land Old Fields (wetlands) (73) : - 24

Fig. 14. Part three of total training sites identified for the KOSH region using Object Analyst
for the classification of 3 March 2020 Sentinel-2 image

Figure 15 shows the spatial distribution and the extent of identified training sites for the 56
classes present in the KOSH region.
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TRAINING SITES FOR 10 MARCH SENTINEL-2 COVERING KOSH REGION
DISPLAYED OVER VNIR BANDS (RGB: 4-3-2) OF SENTINEL-2 OF 10 MARCH 2020
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Fig. 15. Spatial distribution of training sites identified from the segmentation vector for the 3 March 2020
Sentinel-2 image covering KOSH region (overlaid with Sentinel-2 imagery)

Results and discussion

Many attempts of making supervised classification results were made in Object Analyst with
different input options such as mean of four bands and NDVI, standard deviation and mean of
four bands with all 10 available vegetation indices, standard deviation of 4 bands and all 10 vege-
tation indices, standard deviation of 4 bands, 10 vegetation indices and three geometric parameters
(circularity, elongation and rectangularity) and standard deviation of 4 bands, 10 vegetation indi-
ces, elongation and circularity and finally with the inputs of standard deviation of 4 bands and 10
vegetation indices and elongation. The classification result obtained for the inputs of mean of four
bands and NDVI from 10 March 2020 is shown in figure 16. Though this result showed better re-
sults for most of the areas including the urban part, some areas in the east and north-east were mis-
classified as residential patches with grassland cover wherein the real land use / land cover is cover
is natural only grassland. Hence this result is not good to consider for a comparison with 2018 da-
ta. A better result of classification obtained for the year 2020 was with the attribute combination of
standard deviation of 4 bands, and 10 vegetation indices (fig. 17).
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PRELIMINARY LAND COVER RESULT OF KOSH REGION AS ON 10 MARCH 2020
PRODUCKD FROM MEAN OF VNIR BANDS AND NDVI FROM SENTINKIL-2 &
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Fig. 16. Preliminary classification result obtained for 10 March 2020 with inputs of mean of 4 bands and
NDVI values

SECOND LAND COVER RESULT OF KOSH REGION AS ON 10 MARCH 2020
FROM STANDARD DEVIATION & VEGETATION INDICES (SENTINEL-2 VNIR) ﬁ
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Fig. 17. Second classification result obtained for 10 March 2020 with inputs of standard deviation
of 4 bands and ten vegetation indices values
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On further examining this classification result by zooming into it some wrong classes or errors
were noticed in the urban areas and surrounding areas of Klerksdorp. Many patches of urban resi-
dential, industrial and commercial sites were misclassified as mining dumps, some commercial
areas were classified as industrial areas, and similarly some commercial and residential areas were
classified as industrial areas. Due to similarities in pixel values of industrial & commercial and
mining dumps, some sites in urban area were classified as these areas. More training sites were
needed to distinguish such areas in the urban areas and surrounding areas of Klerksdorp. A
zoomed view of urban area and surrounding areas of Klerksdorp showing such errors is shown in
Figure 18. A comparison of the same area portion with the NLC 2018 data (fig. 19) reveals that the
classification result is having similarity in many sites while certain areas were showing with more
details than the NLC 2018 (especially in the residential, commercial and industrial areas). The ma-
jor road network in this classified product is also much clearer as compared to the one seen in the
NLC 2018 data. The extent of class 44 (fallow fields currently having grassland) is much less in
the land use / land cover obtained for the year 2020 when compared with the 2018 NLC data.

Fig. 19. Portion of NLC 2018 dataset covering urban and surrounding areas of Klerksdorp

A zoomed Sentinel-2 view of the urban and surrounding of the Klerksdorp was examined to
identify and locate the misclassified segments. The misclassified patches were further selected and
edited (re-assigned correct classes) after viewing those areas in the satellite image and Google
Earth Pro image of the same year. A view of zoomed portion of Klerksdorp area as seen through
the March 2020 satellite image, and the re-assigned (corrections made) portion of the same area
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are shown in Figure 20. Some areas seen around the sites of mine dumps and mine surface infra-
structure and exaction sites were also misclassified as other classes mainly Class 66 Industrial,
Class 50 Residential Formal (Bare) and Class 49 Residential Formal (low veg / grass) due to simi-
larities of the attribute values. There were many such misclassified small segments and all such
sites were edited. It was a very time consuming task to distinguish such areas belonging to Class
68 Mines Surface Infrastructure (having yellow colour shades) with residential areas having simi-
lar yellow colour shades. On examining the total number of classes identified from the classifica-
tion product, it was noticed that only 54 classes were mapped and two land cover classes viz. Class
32 Cultivated Commercial Permanent Orchards and Class 52 Residential Informal (Bush) were not
classified or missing. The patches of these classes were identified by examining the NLC 2018 da-
ta, the Google Earth Pro images and the Sentinel-2 image and such areas were located and the cor-
responding polygon segments were reassigned with correct class names.
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Fig. 20. A view of Klerksdorp and surrounding areas as seen through the Sentinel-2 on 10 March 2020
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Fig. 21. A view of Klerksdorp and surrounding areas showing re-assigned (corrected) patches
of land cover classification result

After doing re-assigning or editing of misclassified patches of the urban and peripheral area
areas, mine dump areas, and the missing two classes, the final result of land use / land cover map-
ping obtained is shown in figure 22. The legend with 56 classes are shown in figure 23.
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LAND USE/LAND COVER MAP OF KOSH REGION ASON 10 MARCH 2020
PRODUCED FROM SENTINEL-2 VNIR IMAGERY OF 10 MARCH 2020 A
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Fig. 22. Final land use / land cover map of KOSH region (after re-assigning of classes) obtained from Senti-
nel-2 data of 10 March 2020 with inputs of standard deviation of 4 bands and 10 vegetation indices

Comparison of land use / land cover classes for year 2020 with NLC 2018

A comparison of the final result of land use / land cover mapping for the year 2020 (fig. 22)
with the NLC 2018 of KOSH region (fig. 4) reveals that land use / land cover map of year 2020
has more forest patches (open woodland patches) in the north, mining dumps and rain-fed agricul-
tural fields whereas NLC 2018 of KOSH region has more patches of Class 44 Fallow Land & Old
Fields Grass (shown in light pink shade). The NLC 2018 is a smoothed 20 m resolution product
whereas this map of 10 m is not smoothed. The number of patches of class 44 (Fallow Land & Old
Fields currently with Grassland) is significantly reduced in this classification result for the year
2020. This is evident in the area figures of the major classes from the NLC 2018 showing a per-
centage of 7.95% for Class 44 (table 2) and area figure of 0.52% for Class 44 calculated for the
land use / land cover map for the year 2020 (table 3).
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Fig. 23. Legend for the land use / land cover map of KOSH region prepared from Sentinel-2 data

Area figures of the major classes from the NLC 2018 covering KOSH region fable

NLC 2018 Class NLCE(ZISIS Area (square m) % Area

Natural grassland 13 1477709246 53,84%
Commercial annual crops rain-fed / dryland 40 621965313 22,66%
Fallow land & old fields (grass) 44 218126602 7,95%
Open woodland 4 99682011 3,63%

Residential formal (low veg / grass) 49 59050767 2,15%
Mine: tailings and resource dumps 71 42172445 1,54%
Commercial annual crops pivot irrigated 38 32203283 1,17%
Dense forest & woodland 3 27512798 1,00%

Low shrubland (other) 8 20322662 0,74%
Herbaceous wetlands (previously mapped) 23 18071345 0,66%
Open & sparse plantation forest 6 13731598 0,50%
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Area calculated for the different land use / land cover classes for the year 2020

Table 3

1 13 Natural Grassland (13) 1368 617 300 49,32%
2 40 Temporary Crops-rainfed (40) 913 123 000 32,90%
3 4 Open Woodland (4) 110938 100 4,00%
4 71 Mines: Waste (Tailings) & Resource Dumps (71) 54 450 200 1,96%
5 49 Residential Formal (low veg / grass) (49) 42 396 900 1,53%
6 38 Cultivated Commercial Annuals Pivot Irrigated (38) 36 283 200 1,31%
7 50 Residential Formal (Bare) (50) 35013 800 1,26%
8 3 Dense Forest & Woodland (3) 21 340 000 0,77%
9 47 Residential Formal (Tree) (47) 20 616 400 0,74%
10 67 Roads & Rail (Major Linear) (67) 18 490 300 0,67%
11 39 Cultivated Commercial Annuals Non-Pivot Irrigated (39) 16 359 500 0,59%
12 44 Fallow Lands & Old Fields Grass (44) 14 376 500 0,52%
13 23 Herbaceous Wetlands (previous mapped extent) (23) 11 774 000 0,42%
14 63 Urban Recreational Fields (Grass) (63) 9129 300 0,33%
15 14 Natural Waterbodies (14) 8 430 900 0,30%
16 19 Artificial Dams / Waterbodies (19) 8 106 500 0,29%
17 22 Herbaceous Wetlands (currently mapped) (22) 7313 600 0,26%
18 6 Open & Sparse Planted Forest (6) 7072100 0,25%
19 8 Low Shrubland (other regions) (8) 7 027 900 0,25%
20 66 Industrial (66) 6 700 200 0,24%
21 65 Commercial (65) 5197 000 0,19%
22 12 Sparsely Wooded Grassland (12) 4 952 800 0,18%
23 31 Other Bare (31) 4 687 100 0,17%
24 5 Contiguous & Dense Planted Forest (5) 4422 100 0,16%
25 61 Urban Recreational Fields (Tree) (61) 4218 700 0,15%
26 69 Mines: Extraction Sites: Open Cast & Quarries combined (69) 3811 000 0,14%
27 57 Smallholdings (Tree) (57) 3489 500 0,13%
28 68 Mines: Surface Infrastructure (68) 3261 200 0,12%
29 53 Residential Informal (low veg / grass) (53) 3035500 0,11%
30 25 Natural Rock Surfaces (25) 2 887 600 0,10%
31 54 Residential Informal (Bare) (54) 2 483 800 0,09%
32 58 Smallholdings (Bush) (58) 1632900 0,06%
33 48 Residential Formal (Bush) (48) 1547 300 0,06%
34 2 Contiguous Low Forest & Thicket (2) 1517 600 0,05%
35 42 Fallow Land & Old Fields (Trees) (42) 1453900 0,05%
36 73 Fallow Land & Old Fields (wetlands) (73) 1329 300 0,05%
37 20 Artificial Sewage Ponds (20) 842 300 0,03%
38 62 Urban Recreational Fields (Bush) (62) 827 000 0,03%
39 18 Natural Pans (flooded) (18) 666 300 0,02%
40 46 Fallow Land & Old Fields (Low Shrub) (46) 658 000 0,02%
41 45 Fallow Land & Old Fields (Bare) (45) 621 300 0,02%
42 26 Dry Pans (26) 462 200 0,02%
43 7 Temporary Unplanted Forest (7) 455 400 0,02%
44 30 Bare Riverbed Material (30) 451 800 0,02%
45 59 Smallholdings (low veg / grass) (59) 411200 0,01%
46 21 Artificial Flooded Mine Pits (21) 393 900 0,01%
47 27 Eroded Lands (27) 340 700 0,01%
48 32 Cultivated Commercial Permanent Orchards (32) 291 800 0,01%
49 43 Fallow Land & Old Fields (Bush) (43) 279 600 0,01%
50 64 Urban Recreational Fields (Bare) (64) 237 900 0,01%
51 56 Village Dense (56) 233 300 0,01%
52 60 Smallholdings (Bare) (60) 186 700 0,01%
53 55 Village Scattered (55) 153 500 0,01%
54 51 Residential Informal (Tree) (51) 87 900 0,003%
55 72 Land-fills (72) 65 100 0,002%
56 52 Residential Informal (Bush) (52) 36 700 0,001%
Sum total 2775189 600 | 100,00%
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Land cover mapping of KOSH region for year 2019 using batch classification

By using the batch classification algorithm of Object Analyst, one can run classification simul-
taneously on a group or collection of images with similar qualities of acquisition. The classifica-
tion run on an individual image (e.g. satellite image of March 2020) can be used as reference for
the batch (e.g. the image of March 2019) to be processed. The batch classification applies a seg-
mentation step, an attribute-calculation step, a Support Vector Machine (SVM)-classification step
(based on the training-model file created from the first individual image classified). The training
model file created with the option of having input attributes of standard deviation of VNIR bands
and 10 vegetation indices was used in the batch classification. The batch classification using a pre-
vious training model file helps to reduce the analysis time by avoiding the step of identifying train-
ing sites for a similar image of a different date of acquisition. The final result of land use / land
cover obtained from the batch classification step run using the Sentinel-2 image acquired on 16
March 2019 is shown in figure 24. A visual examination of the result of land use / land cover clas-
sification result (fig. 24) using the Sentinel-2 data of 16 March 2019 reveals that most of the areas
of Class 13 Natural Grassland is mapped correctly.

LAND USE/LAND COVER OF KOSH REGION DURING MARCH 2019
PRODUCED FROM SENTINEL-2 VNIR IMAGERY OF 16 MARCH 2019 ﬁ
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Fig. 24. Land cover classification result obtained from the Sentinel-2 image of 16 March 2019 using Batch
Classification option of Object Analyst

Comparison of land covers of year 2019, year 2020 and NLC 2018

The north-eastern part of the land use / land cover map for the year (Figure 24) shows many
patches of Class 23 Herbaceous Wetlands (previous mapped extent) that are actually Class 13 Nat-
ural Grassland in the land use / land cover of year 2020 and NLC 2018. The eastern part of year
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2019 result shows more patches of Class 40 Temporary Crops-rainfed when compared with the
result for year 2020. The south-eastern part of the result for the year 2019 shows more patches of
Class 38 Cultivated Commercial Annuals Pivot Irrigated. Similarly, more patches of Class 23 Her-
baceous Wetlands (previous mapped extent) are seen in the south-western region of the land use /
land cover map for the year 2019. It is also found that most of the area of the Vaal River (Class 14
Natural waterbodies) seen in the south-eastern part of figure 24 is mapped as Class 20 Artificial
Sewage Ponds, which is noticed as an error in the classification using batch classification. A por-
tion of the results of land use / land cover classification for the years 2020 and 2019 showing the
south-west part of KOSH region along with corresponding satellite images of years 2020 and 2019
showing the same extent is shown in figure 25.
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Land cover 2019 of south-west of KOSH. 16 March 2019 Sentinel-2 view of south-west KOSH.

Fig. 25. A portion of the results of land use / land cover classification for years 2020 and 2019 showing
the south-west part of KOSH region along with corresponding satellite images of years 2020 and 2019

A close look of these figures reveals that the result for the year 2019 is distinct with more small
patches of class 44 Fallow Land & Old Fields Grass (shown in light pink shade) that are seen to-
wards the south-west part. On comparing the satellite images of March 2019 and 2020, it can be
observed that some natural grassland (Class 13) seen in the year 2019 has become agricultural
fields (in south-west) and such land use dynamics changes are evident through comparison of sat-
ellite images or land cover dataset. More vegetation cover is seen in the north of 2019 image.
There is some slight dissimilarities in the appearance of these two satellite images due to some dif-
ference in pixel values. Such dissimilarities observed in the satellite images of two different years
(year 2019 and year 2020) will give a different result when batch classification is applied on the
other image with the training sites of year 2020.

A further examination of the classification result for the year 2019 revealed that three land use /
land cover classes viz. Class 2 Contiguous Low Forest & Thicket, Class 32 Cultivated Commercial
Permanent Orchards and Class 52 Residential Informal (Bush) were not mapped or missing in the
attribute table. The number and areal extent of the training sites for these two classes were very
less (not sufficient enough) and their attributes or characteristics were not so distinct, hence they
were not mapped in the batch classification. Locations of such classes have to be identified in the
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image and the corresponding polygon segments have to be manually re-assigned in order to show
these classes in the final map. The land use / land cover map for the year 2019 requires further ex-
amination at many locations for accuracy check and subsequent editing or re-assigning of the
wrong polygon segments.

The summarised area figures for the present 53 land cover classes for the year 2019 is shown in
Table 4. Comparison of percentage area figures for the major land cover classes of year 2020 and
2019 show that Class 13 Natural Grassland constitutes 49.32% of the total area in the year 2020
whereas in the year 2019 the extent of this class is less (42.14% of the total area). The areal extent
of the same class in NLC 2018 dataset is higher (53.84% of the total area). Class 40 Temporary
crops rainfed constitutes 32.90% of total area during year 2020 whereas in year 2019 it covers
nearly same extent (32.97% of total area). The same class seen in NLC 2018 covers much lesser
areal extent (22.66% of total area).

Class 4 Open woodland covered 4% of the total area in the year 2020 whereas in the year 2019
it covered 3% of the total area. This class covered 3.6% of the total area in NLC 2018. The area
figures of Class 4 Open woodland do not vary much in these years. Class 71 Mines: Waste
(Tailings) & Resource Dumps constitute 1.96% of the total area in the year 2020. The extent of
this class in the year 2019 is found to be 2.5% of the total area whereas in NLC 2018, this class is
having an area of 1.5% of the total area. The higher resolution of VNIR bands at 10 m has contrib-
uted to more accurate mapping of this class. Class 44 Fallow Lands & Old Fields Grass covered
about 8% of the total area in NLC 2018 whereas in the year 2019 this class covered less area
(3.3% of total area) whereas in year 2020 it decreased significantly to 0.5% of the total area. Class
49 Residential Formal (low veg / grass) had constituted 2.15% of the total area in NLC 2018
whereas in the land use / land cover map of year 2020 it covered only 1.53% of the total area. For
this class during the year 2019 the calculated percentage area is 1.5% of the total area. Class 38
Cultivated Commercial Annuals Pivot Irrigated had covered 1.2% of the total area in NLC 2018
while this class has constituted 1.3% of the total area in the land use / land cover map of year
2020. For the year 2019, this class covered significantly higher percentage area of 5%. Class 3
Dense Forest & Woodland had covered 1% of the total percentage area in NLC 2018 whereas in
the year 2020 the percentage of this class reduced to 0.8% of the total area. In the year 2019, the
coverage of this class is still much lower (0.4% of the total area).

Conclusions

Recent Sentinel-2 satellite images acquired in March 2020 and 2019 covering the KOSH region
could be classified using Geomatica Object Analyst and produced some useful land cover products
to aid in land cover change detection and land use dynamics studies. The Sentinel-2 VNIR bands
(10 m) are suitable for land cover mapping (for discriminating different land use /land covers in-
cluding informal settlements, road network, mine dumps, urban recreation fields, different vegeta-
tion covers and agricultural practices etc.). Vegetation indices alone are not enough to differentiate
urban areas (commercial/roads) and mining dumps. Use of lower resolution SWIR bands along
with VNIR bands might improve the classification accuracy for urban area if a 20 m resolution
output with lesser details is opted. The land cover datasets shown in this study would help in un-
derstanding the land use / land cover dynamics and also studies of environmental monitoring. This
study could illustrate the usefulness of remote sensing analysis to aid in land cover mapping using
freely available high resolution Sentinel-2 data. Editing of the identified training sites of year 2020
along with viewing of the features of 2019 satellite data will enhance the classification accuracy
for year 2019.
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Area calculated for the different land use / land cover classes for the year 2019

Table 4

Sr No. Land use / land cover during March 2019 Area (m?) % Area
1 13 Natural Grassland (13) 1 169 347 200 42,14%
2 40 Temporary Crops-rainfed (40) 915 042 200 32,97%
3 38 Cultivated Commercial Annuals Pivot Irrigated (38) 139 129 500 5,01%
4 44 Fallow Lands & Old Fields Grass (44) 90 974 100 3,28%
5 4 Open Woodland (4) 84 056 900 3,03%
6 71 Mines: Waste (Tailings) & Resource Dumps (71) 68 146 800 2,46%
7 23 Herbaceous Wetlands (previous mapped extent) (23) 58 082 300 2,09%
8 49 Residential Formal (low veg / grass) (49) 40 510 100 1,46%
9 6 Open & Sparse Planted Forest (6) 40 115 400 1,45%
10 50 Residential Formal (Bare) (50) 38 608 000 1,39%
11 12 Sparsely Wooded Grassland (12) 16 352 700 0,59%
12 67 Roads & Rail (Major Linear) (67) 15 578 600 0,56%
13 8 Low Shrubland (other regions) (8) 12 300 300 0,44%
14 3 Dense Forest & Woodland (3) 11 509 900 0,41%
15 25 Natural Rock Surfaces (25) 9014 200 0,32%
16 31 Other Bare (31) 6396 200 0,23%
17 61 Urban Recreational Fields (Tree) (61) 6 377 500 0,23%
18 47 Residential Formal (Tree) (47) 5411100 0,19%
19 5 Contiguous & Dense Planted Forest (5) 5107 100 0,18%

20 66 Industrial (66) 4439100 0,16%
21 20 Artificial Sewage Ponds (20) 4031 500 0,15%
22 19 Artificial Dams / Waterbodies (19) 3718 600 0,13%
23 63 Urban Recreational Fields (Grass) (63) 3521000 0,13%
24 69 Mines: Extraction Sites: Open Cast & Quarries combined (69) 3309 900 0,12%
25 30 Bare Riverbed Material (30) 2 786 500 0,10%
26 22 Herbaceous Wetlands (currently mapped) (22) 2 193 600 0,08%
27 65 Commercial (65) 2 105 400 0,08%
28 73 Fallow Land & Old Fields (wetlands) (73) 1778 600 0,06%
29 14 Natural Waterbodies (14) 1707 000 0,06%
30 18 Natural Pans (flooded) (18) 1 665 800 0,06%
31 7 Temporary Unplanted Forest (7) 1619100 0,06%
32 58 Smallholdings (Bush) (58) 1573100 0,06%
33 48 Residential Formal (Bush) (48) 1409 300 0,05%
34 54 Residential Informal (Bare) (54) 1290 600 0,05%
35 39 Cultivated Commercial Annuals Non-Pivot Irrigated (39) 848 600 0,03%
36 53 Residential Informal (low veg / grass) (53) 610900 0,02%
37 59 Smallholdings (low veg / grass) (59) 558 000 0,02%
38 26 Dry Pans (26) 508 200 0,02%
39 2 Contiguous Low Forest & Thicket (2) 504 200 0,02%
40 57 Smallholdings (Tree) (57) 457 900 0,02%
41 27 Eroded Lands (27) 441 100 0,02%
42 68 Mines: Surface Infrastructure (68) 404 100 0,01%
43 21 Artificial Flooded Mine Pits (21) 339 200 0,01%
44 51 Residential Informal (Tree) (51) 256 600 0,01%
45 55 Village Scattered (55) 211400 0,01%
46 62 Urban Recreational Fields (Bush) (62) 178 300 0,01%
47 64 Urban Recreational Fields (Bare) (64) 141 400 0,01%
48 45 Fallow Land & Old Fields (Bare) (45) 133 400 0,005%
49 46 Fallow Land & Old Fields (Low Shrub) (46) 132 100 0,005%
50 56 Village Dense (56) 121 900 0,004%
51 72 Land-fills (72) 91 000 0,003%
52 60 Smallholdings (Bare) (60) 30100 0,001%
53 52 Residential Informal (Bush) (52) 12 000 0,0004%
Sum total 2775189 600 100,00%
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EXTRACTION AND MODELING OF INDIVIDUAL SIKANG PINE STEM BASED
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Forest structure parameters are important parameters in tree volume and biomass estimation. Sikang
pine (Pinus densata) is one of the main coniferous species and the pioneering tree species for barren moun-
tain afforestation in western China. Its stem has the characteristics of tall and straight and has important
timber value. In order to promote the ecological study of Sikang pine forest, with the point cloud of Sikang
pine natural forest obtained by terrestrial laser scanning as the data source, the point cloud clustering al-
gorithm based on Euclidean distance, the comparative shortest-path algorithm and the point cloud cylinder
detection and extraction algorithm were used to extract and model of Sikang pine stem. The results show:
(1) point cloud data can be used to extract stem from natural forest, and good extraction results can be ob-
tained in natural forest with complex growth environment; (2) the higher extraction accuracy of the lower
part of stem can be achieved, and it can be used to build a stem model. Research shows that the stem can be
extracted well based on the point cloud data and can be modeled. But due to severe canopy occlusion in the
upper stem, the high-precision extraction of upper stem point clouds needs further study.

Key words: Pinus densata, terrestrial laser scanning, point cloud data, stem extraction, modeling

Introduction

Sikang pine (Pinus densata) is typical for western China. It has the characteristics of high
growth, straight stem, and wide use of timber (Lu, Pan, 2008). It is an important tree species for
forest greening and afforestation, and has important ecological and economic values. In recent
years, many scholars have conducted various research of Sikang pine, including growth environ-
ment, forest fire prevention, biomass, forest parameters and carbon storage, etc. (Zhang et al.,
2012; Li et al., 2016; Wang et al., 2019; Xiong et al., 2017). The growth morphology of the tree
stem is one of important indicators for forest evaluation. Extracting the stem in the natural forest
can provide the data basis and reference for research on the utilization and protection of this spe-
cies.

The traditional forestry stem survey method requires investigators to go deep into the forest ar-
ea for measurement and statistics. Even though this method can ensure the accuracy of the stem
measurement, it is time-consuming, labor-intensive, and inefficient. The emergence and develop-
ment of Light Detection and Ranging (LiDAR) remote sensing technology provides a new method
for forest inventory and research. It can efficiently and accurately produce the three-dimensional
spatial structure of the forest-point cloud data, and further explore forest data to make up for the
shortcomings of traditional methods. Airborne Laser Scanning (ALS) and Terrestrial Laser Scan-
ning (TLS) are currently the two main platforms for the application of Lidar technology in forests
(Zhao et al., 2019). At present, forest ecology studies using ALS technology mostly focus on for-
est biomass and parameter inversion (Naesset, Gobakken, 2008; Wang et al., 2015; Geng et al.,
2015). Due to difficulty of obtaining data about the structure of trees below the forest canopy, such
as stems, it is difficult to conduct research on the extraction and modeling of stems using ALS
technology. TLS point cloud data can clearly and accurately characterize the three-dimensional
spatial structure information below the forest canopy, and has great potential for extracting infor-
mation such as tree stems. At present, most researchers are keen on the extraction of parameters
such as tree height and diameter at breast height (Beland et al., 2011; Li et al., 2012; Liu et al.,
2014; Liu et al., 2018). And there are few studies on extraction and modeling of individual tree
stem in natural forests (Liang et al., 2013; Xia et al., 2015).
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Our research aims to extract stem and model the Sikang pine by using point cloud data to pro-
vide reference for research on this or other tree species.

Materials and Methods

Data acquisition and preprocessing

Shangri-La City is located in the northwestern part of Yunnan Province (99°33'E — 100°58'E,
27°20'N — 28°09'N), with abundant forest resources and high vegetation coverage. In the study,
Leica P40 3D laser scanner was used as the data acquisition equipment, and a natural Sikang pine
forest sample plot was selected as the experimental object in Xiaozhongdian County, Shangri-La
City, Yunnan Province of China to acquire point cloud data. In order to obtain the complete point
cloud data from the research sample plot, 5 sites (1 in the center and 4 nearby) were selected in the
sample plot for scanning, as shown in figure 1. After obtaining the cloud data of each site in the
sample plot, stitch them to obtain the original point cloud data. Then, the four steps of thinning,
denoising, filtering and normalization were preprocessed. Finally, we obtained the complete point
cloud experimental data of the Sikang pine by cutting in a circle with a radius of 15 meters, as
shown in figure 2.

o
.P_; .P; . Ps

"

Fig. 1. Scanning station diagram

Fig. 2. Experimental data of the Sikang pine A) Top view; B) Front view

Research process
After preprocessing the data, the research firstly clustered the experimental data based on the
point cloud clustering algorithm of Euclidean distance in order to filter and remove the point cloud
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of shrub and grass, and extract the Sikang pine. Secondly, the comparative shortest-path algorithm
(CSP) was used to segment the point cloud and extract individual trees. Finally, cylinder recogni-
tion was performed on the point cloud of an individual tree, the stem point cloud is extracted, and
the cylinder is fitted to obtain the stem model. The research technical route is shown in figure 3.
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Fig. 3. Technology Roadmap

Euclidean distance clustering

The research uses the point cloud clustering algorithm of Euclidean distance to cluster the Si-
kang pine point cloud. The Euclidean distance between two points in three-dimensional space re-
fers to the straight-line distance between the two points. The Euclidean distance d of two points in
three-dimensional space a (x1, y1, z1), b (x2, y2, z2) is calculated by the formula (1).

d=\(x=%,) + (3, ¥, +(z,-2,)" . (1)

The point cloud is clustered through a given initial distance threshold. If the distance between
the two points is less than the given threshold, the two points belong to the same category. Accord-
ing to this principle, the Sikang pine point cloud is extracted. The steps of the algorithm are as fol-
lows: (1) load point cloud data and find the ground plane to store it; (2) specify the minimum dis-
tance between two different types of clusters, cluster the point clouds that do not include the
ground plane, and then assign the same label to the points belonging to the same cluster; (3) give
an additional label to the ground plane point cloud; (4) extract point clouds of different categories
based on labels. The research explored the minimum distance between two different types of clus-
ters and revealed that when the minimum distance is 0.5m, the Sikang pine clustering result is the
best, as shown in figure 4.



Fig. 4. Clustering results

It can be seen from figure 4 that the Sikang pine is basically clustered, but there are also some
independent pines that are divided into different categories (green point cloud). Then we used fil-
ter and removed the shrub and grass point clouds in order to extract the Sikang pine, and perform
the Sikang pine point cloud fusion using the CloudCompare point cloud processing software to
obtain a complete point cloud in the experimental sample plot, as shown in figure 5.

Fig. 5. The merger results of Sikang pine

CSP point cloud segmentation

CSP is a point cloud segmentation algorithm based on ecological theory proposed by Tao et al.
(2015). The principle of the algorithm is as follows: according to the ecological theory "there are
many conduits for nutrient transport in a tree". Let us assume the conduit from the leaves to the
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roots of the tree to be the path, and the metabolic distance to be calculated based on the path dis-
tance from a leaf to the root, by comparing this metabolic distance. By applying the point cloud
individual tree segmentation, we will get that the metabolic distance from a certain point to the
root of the A tree is shorter than the metabolic distance to the root of the B tree, then the point be-
longs to the A tree. The metabolic distance of this path is calculated according to the formula (2):

D\f\i)Trunk = Dv%Trunk /DBH2/3 s (2)

Where’ D\f\i)Trunk
represents the actual distance from point v to the stem of the tree, and DBH represents the diame-
ter at breast height of the tree. The result of individual tree segmentation of Sikang pine point

cloud by CSP algorithm is shown in figure 6.

represents the metabolic distance from point v to the stem of the tree, D

v—>Trunk

Fig. 6. The individual tree segmentation result of Sikang pine

Point cloud cylinder detection and recognition

The growth morphology of the Sikang pine stem is mainly cylindrical. According to this fea-
ture, the point cloud can be identified and extracted, and then the stem cylindrical model can be
established. The research uses point cloud cylinder extraction and detection to extract Sikang pine
stems. The principle is as follows: given the maximum distance from point to the cylindrical sur-
face, if the shortest distance from point p to the cylindrical surface is less than the given distance,
then point p belongs to the point on the tree stem. The steps of the algorithm are as follows: (1)
load the point cloud data; (2) set the maximum distance from point to the cylindrical surface; (3)
set a coordinate area for cylinder identification; (4) set a normal vector; (5) perform point cloud
cylindrical detection and extraction.

Results and discussion

The research combines the point cloud clustering algorithm based on the Euclidean distance
and the CSP point cloud segmentation algorithm to extract the individual Sikang pine, then recog-
nizes and detects the cylinder to extract the Sikang pine stem. Sikang pine stem extraction and its
stem model results are shown in the figure 7.
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Fig. 7. Stem extraction and modeling results

It can be seen from figure 7 that the results of the stem extraction of Sikang pine are generally
good, which was the purpose of the research. However, because the upper stem of the Sikang pine
canopy is severely occluded, it is difficult to obtain a complete extraction of the stem point cloud,
especially in the upper part of the stem, thus the accuracy of the extraction results is relatively low.
The lower part of the stem is not obstructed, and the extraction results are better. This fits the
growth results of the stem model and can basically reflect the growth of the stem. However, from
the results of the model established by the stem, the thickness of the upper part of the stem model
is the same as that of the lower part, which does not meet the actual growth of the stem. Through
research and analysis, the upper canopy occlusion is still the main cause of this problem. The ex-
periment was carried out on another Sikang pine natural forest sample plot with a more complicat-
ed growth environment. This sample plot contains other tree species and the growth density is also
high. In order to improve the accurate identification and extraction of Sikang pine, when collecting
point cloud data in this sample plot, the Sikang pine was numbered, and finally the Sikang pine
was identified and stem extracted according to this number, in order to eliminate the interference
of other tree species in the study. The stem extraction and model results of the Sikang pine in this
sample plot are shown in figure 8.

Fig. 8. Extraction and modeling results of Sikang pine stem in complex plots
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It can be seen from figure § that for the research sample plot with complex growth environ-
ment, the stem extraction of Sikang pine based on TLS point cloud data can still be achieved. In
particular, the accuracy of the extraction results from the lower part of the stem is good, and can
serve as the basis for stem growth model development. However, there are also problems caused
by canopy occlusion, and the extraction results of the upper part of the stem are relatively poor.
We found there are two main aspects that affect the accuracy of the results, which are point cloud
density and canopy occlusion. The influence of point cloud density and canopy occlusion on stem
extraction and modeling is discussed below.

1) The effect of point cloud density on stem extraction and modeling.

The point cloud density is usually characterized by the distance between the two points of the
point cloud. The smaller the distance between the two points, the greater the number of point
clouds and the greater the point cloud density. Through research, the point cloud density has a cer-
tain influence on the main extraction and modeling of the Sikang pine. The greater the density of
the point cloud, the greater the number of point clouds that make up the stem, and the extracted
stem can more accurately reflect the growth of the stem, so that the stem can be modeled more ac-
curately, but calculations increase with the increase of the point cloud density.

2) The influence of canopy occlusion on stem extraction and modeling.

The canopy around the upper part of the stem grows densely, which has an impact on the point
cloud acquisition in the upper part of the stem, and it is difficult to obtain a complete point cloud
compared to the lower part of the stem. For Sikang pine that the upper canopy of the stem grows
sparsely and does not cover severely, the stem extraction results are more accurate and the model
is more accurate. For Sikang pine with dense canopy growth, minimizing its influence on stem ex-
traction and modeling will be the next focus of our research.

Conclusion

The research involved stem extraction and modeling of the individual Sikang pine in the natural
forest based on TLS point cloud data. The results revealed that: (1) the stem of Sikang pine in nat-
ural forests can be extracted well, and good extraction results can still be obtained in natural for-
ests with complex growth environments based on point cloud data. (2) the extraction results of the
lower part of the Sikang pine stem are more accurate, and the stem model can be established,
which can provide a reference for the forest ecology research of Sikang pine or other tree species.
However, due to the complexity of the point cloud data and the occlusion of the upper part of the
stem by the canopy, it is difficult to obtain a complete point cloud of the upper part of the stem.
Therefore, in future research, it is still necessary to improve the accuracy of point cloud extraction
on the upper part of the stem, in order to develop a more accurate model of stem.
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ON-THE-FLY LAND COVER MAPPING USING MACHINE LEARNING
WITH MULTISPECTRAL SATELLITE IMAGERY ON GOOGLE EARTH ENGINE

S. Papaiordanidis, C. Minakou, [.Z. Gitas
Laboratory of Forest Management and Remote Sensing, School of Forestry and Natural
Environment, Aristotle University of Thessaloniki

Land cover is one of the most important environmental variables used to describe natural ecosystems.
Constant changes on the Earth’s surface create the need for new, up-to-date, and accurate land cover
maps. During the last decades, remote sensing products have been used in conjunction with field measure-
ments for the production of land cover maps in a cost-efficient manner. The aim of the present study was
the development of a method for reliable on-the-fly land cover mapping using the Random Forest classifier
and Sentinel-2 multispectral imagery on the Google Earth Engine cloud platform. The Random Forests al-
gorithm was employed, and two classification schemes were adopted, one using the original 44 land cover
classes used by the CORINE land cover product, and one using five general land cover classes (Artificial
surfaces, Agricultural areas, Forest and semi-natural areas, Wetlands, and Water bodies), resulting in the
generation of two land cover maps. The 2018 CORINE land cover product was used to identify training
samples and validate the resulting land cover maps. The results showcased that the 44-class land cover
map had an overall accuracy of 72.85% and the 5-class land cover map 88.32%. Overall, the results of this
research indicate the capability of Random Forest algorithm in the reliable land cover classification.

Keywords: Land cover mapping, Sentinel-2, Google Earth Engine, Random Forest, Remote sensing,
Pixel-based classification
Introduction

Land cover type is highly correlated with the biophysical properties of an area, and thus it is
considered one of the most important environmental variables (Mason et al., 2003). Natural pro-
cesses on the Earth’s surface have a notable impact on climate, biodiversity, and the ecosystems
ability to fulfill the needs of the modern human society (Mahmood et al., 2014). Land cover map-
ping is essential for planning and management of natural resources, as well as modeling environ-
mental variables (Gomez et al., 2016). Traditionally, field measurements of land cover are consid-
ered as one of the most reliable land cover mapping techniques, however they are also costly, time
-consuming, and present spatial limitations (Friedl et al., 2002). Additionally, constant changes in
the Earth’s surface, often render the existing land cover maps obsolete, creating the need for new
updated maps. These obstacles lead to shortages of up-to-date and reliable land cover maps, which
limit management bodies in the decision-making process.

In order to address this challenge, many scientists have investigated the potential of various
classification algorithms to produce accurate land cover maps using satellite imagery (Anthony et
al., 2007; Mahdianpari et al., 2018; Moser et al., 2012; Rodriguez-Galiano et al., 2012). One of the
most commonly used algorithms in land cover mapping is the Random Forests ensemble. Random
Forests have been shown to provide high overall accuracy in complex land cover classification
problems (Maxwell et al., 2019; Na et al., 2010; Pelletier et al., 2016; Stefanski et al., 2013;
Waske and Braun, 2009).

One of the challenges of using Random Forests is the preparation and set-up of the algorithm
and the required software, as well as the input dataset preprocessing, and selecting and labeling the
training samples. Currently, new cloud-based technologies offer easy access to data and large
amounts of processing power to their users. Google Earth Engine (GEE) constitutes one of the
most commonly used platforms which provides instant access to data and high processing power.
Users can access GEE platform either from its online integrated development environment (IDE),
or from the Application Program Interface (API) that is offered. Through GEE, users gain access
to a large variety of datasets, including geospatial, satellite imagery, meteorological, census, etc.
(Gorelick et al., 2017).
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The aim of this study is to evaluate the effectiveness of Random Forest algorithm in land cover
mapping, using Sentinel-2 multispectral data through the Google Earth Engine platform. The spe-
cific objectives are:

e The implementation of a method for calling and filtering the Sentinel-2 imagery archive and

calculating spectral indices used for land cover mapping.

e The implementation of a method for training sample extraction from the Coordination of In-

formation on the Environment (CORINE) land cover dataset.

e Land cover classification using the Random Forest algorithm.

o The quantitative and qualitative evaluation of the results in terms of land cover map overall

accuracy and implementation effort.

Study area

The study area is located at the northern part of Greece, around the city of Thessaloniki, ex-
tending from 41°54°54.81” to 40°53°62.74” North, and from 22°19°91” to 23°47°71.06” East (fig.
1). The altitude ranges from sea level to 2,029 meters, and the surface area is 10,000 km?. The cli-
mate is typical Mediterranean, with warm and dry summers, and cool and wet winters. This partic-
ular area was chosen because of its wide variety of land cover classes. Agricultural, forested, and
artificial surfaces can be found in different variations, making the study area a suitable location to
test the land cover mapping capabilities of the Random Forests algorithm.
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Fig. 1. Study area: Thessaloniki, Greece

Materials and methods

Sentinel-2 data

The satellite data that were used in this study included two images from Sentinel-2 MultiSpec-
tral Instrument (MSI). The first image was acquired on October 26™,2018 and the second on Au-
gust 31%,2020. Sentinel-2 imagery has a spatial resolution of 10, 20, and 60 meters (depending on
the band), and a temporal resolution of 3-5 days depending on the location. The MSI instrument
records spectral data in 13 bands ranging from the blue part of the electromagnetic spectrum (443
nm) to the short-wave infrared (2,190 nm).
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The acquired images were already preprocessed to level 2A, which means that the images had
been geometrically, radiometrically, and atmospherically corrected using the Sen2Cor algorithm
by the Sentinel team (Main-Knorn et al., 2017).

CORINE data

The CORINE Land Cover (CLC) inventory provided by the Copernicus Land Monitoring Ser-
vice was also used in this study (Biittner et al., 2004). The product is a thematic map with 44 land
cover classes and a spatial resolution of 100 meters (fig. 2).
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Fig. 2. CORINE land cover map of the study area with 44 classes
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Additionally, a second map based on the CORINE product was constructed with the initial
land cover classes summarized into five, namely Artificial surfaces, Agricultural area, Forest and
semi-natural areas, Wetlands, and Water bodies (fig. 3).

500000,000 630000000 650000000 590000.000 720000.000
G
o W : e
4530000,000 T e e N
+.< Shoof . . CELTe 4
N & P
L\ ~a - -
LY (- .
o - v
4560000,000 -4 3 ] [ e 1
‘ + AR b 3 e e
5 3 e+
LoaY Ve Ty
v t . : ; .
Ny . .
2% . o a0t
!-i, : ot z/’ st
ik =
¢ D LCR e e
4530000,000 L =
+ C + +
Py v .
L AP A -
'fy"\.' i « \* -
e p ', ]
e r raly % v
- - ._l
. T =
4500000.000 4‘1\. ' Yrg e b SN
. % 2ok = . Classes
B s
' .- M+ B Artificial surfaces
i N .
P ) > ) Agricultural areas
| Forest and semi natural areas
] Wetlands
Water bodies

4470000.000

0 10 20 30 40 50km
N N

Fig. 3. CORINE land cover map of the study area with five classes

This was performed in order to investigate the potential effect of the employed classification

scheme on the classifier’s performance.

Methodology

The complete procedure of the
methodology took part in GEE’s
online code editor (https:/
code.earthengine.google.com/).
The steps followed are presented
in the flowchart below (fig. 4).

Sentinel-2
2018 and 2020

3

Preprocessing

Cloud/shadows masking
‘ Filtering collection & spectral indices

The Sentinel-2 images were
initially filtered by location and
date. More specifically, the loca-
tion filtering was carried out by
setting a point in the study area
and only keeping the Sentinel-2
images that their extent intersect-
ed with this point. The date filter-
ing was done by limiting the im-
ages to ones that were acquired
during 2018 and images that were
acquired during 2020. The reason
for that was to extract training

Sample pixels from the 2018
image were extracted and
labeled according to the 2018

Training

sample
extraction

calculation

CORINE files

m
Land cover
map creation

Accuracy
assessment

Fig. 4. Flowchart of the methodology
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samples from the 2018 image, label them accordingly using the CORINE land cover map using
random points, and then validate the trained algorithm using again random points (different from
the ones used for training) labeled by the CORINE land cover product. The 2020 image was used
to employ the trained algorithm and provide a land cover map for 2020.

The filtered images were then sorted in order of cloud cover using the Sentinel-2 metadata vari-
able “CLOUDY PIXEL PERCENTAGE” and the least cloudy images for 2018 and 2020 were
eventually selected. Next, a cloud and shadow mask was applied to the selected images by using
the cirrus band and the cloud mask provided with Sentinel-2 2A level products.

After the examination of several spectral indices, BSI (Bare Soil Index), NDVI (Normalized
Difference Vegetation Index), NDWI (Normalized Difference Water Index), and MCARI
(Modified Chlorophyll Absorption in Reflectance Index) were selected to participate in the classi-

fication process (table 1).
Table 1
Spectral indices calculated
Index name Formula Citation
BSI ((B6+B4)—(B5+B2))/((B6+B4)+(B5+B2)) (Li and Chen, 2014)

NDVI ((B8 —B4))/((B8+B4)) (Rouse Jr et al., 1974)
NDWI ((B8 —B11))/((B8+B11)) (Gao, 1996)

MCARI [(B5 —B4)—0.2 *(B5 —B3)] *(B5/B4) (Wu et al., 2008)

After the index calculation, 1000 random pixel samples were extracted from the 2018 Sentinel-
2 image, labeled using the CORINE land cover map, and then the Random Forests algorithm was
trained using 650 trees. Afterwards, 2000 random pixels (different from the ones used for training)
were then selected in order to validate the classification accuracy using the CORINE land cover
map. The validation was performed by GEE’s native error matrix construction functions and the
overall accuracy was calculated.

Finally, a land cover map was produced using as input the 2020 Sentinel-2 image to the trained
algorithm. This methodology process was repeated two times, using the 44-class and the 5-class

CORINE land cover map, respectively.

Results & discussion
The produced land cover maps are presented below (fig. 5, fig. 6):
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Fig. S. Resulting 5-class land cover map produced by employing the Random Forests algorithm
on the Sentinel-2 2020 image
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Fig. 6. Resulting 44-class land cover map produced by employing the Random Forests algorithm
on the Sentinel-2 2020 image

The overall accuracies for the 5-class and the 44-class land cover maps were 88.32% and
72.85% respectively. Below, a comparison between each map and the corresponding original

CORINE land cover map is presented (fig. 7, fig. 8).
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Fig. 7. The resulting 5-class land cover map (left) and the original S5-class CORINE land cover map (right)
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Fig. 8. The resulting 44-class land cover map (left) and the original 44-class CORINE land cover map (right)

It is obvious, that even though the overall accuracies of the resulting maps are quite high, and
the general spatial distribution of the classes is correct, the fine details are lost. This classification
error can be attributed to the fact that the spatial resolution of the CORINE land cover product is
100 meters, while Sentinel-2 spatial resolution is 10 meters. This could cause a problem in areas
where a CORINE 100m pixel contains two different land cover classes. In these cases, only the
value of the dominant class is given, while the spectral features recorded by Sentinel-2 are hetero-
geneous inside the confines of the CORINE pixel. Another issue with this classification is the fact
that the distribution of classes was not taken into consideration. This means that since the training
samples were selected randomly, minority classes (i.e. Wetlands) were not guaranteed to be part of
the training samples.

One of the benefits of this methodology is that it can be used from any workstation with access
to the internet and with no special preparation or special hardware requirements. Also, there is no
need for downloading the required datasets since the whole procedure takes place in Google’s re-
mote servers. Another benefit of the methodology is its’ time-efficiency since a Sentinel-2 tile can
be classified in under a minute. This gives the ability to land managers to have a general idea of
the spatial distribution of land covers in an area where no up-to-date land cover maps are availa-
ble.

Conclusions

In this study, a method for calling the Sentinel-2 imagery archive and calculating spectral indi-
ces for land cover mapping was implemented. A method for training sample extraction from the
CORINE land cover dataset was applied and a land cover classification using the Random Forest
algorithm was performed. A method for confusion matrix construction and overall accuracy esti-
mation was also employed for the validation of the classification results. Finally, a quantitative and
qualitative evaluation of results in terms of land cover map accuracy and implementation effort
was conducted.

The results showcased that produced maps had relatively high overall accuracy, but closer in-
spection of the maps revealed that there were some issues with the classification. For example,
while the general class distribution was correct, the fine details of the land cover distribution were
lost. This method provides the ability to land managers to trade between availability and accuracy.
If an accurate and reliable land cover map is available there is no need to use this method, but
when there is no such product, this method can rapidly generate a land cover map that represents
the general spatial distribution of land cover in an area. More specifically:
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o Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on
Google Earth Engine cloud platform, greatly decreases the time needed for land cover map-

ping.

e Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on
Google Earth Engine cloud platform, still produces comparable results to other land cover
mapping products.

Future research could include the use of other machine learning classification techniques (i.e.
Deep Learning) and Sentinel-2 imagery on Google Earth Engine. A different training set other
than CORINE land cover map, or even different optical satellite datasets with higher resolution
(i.e. WorldView). Finally, other types of remote sensing data like LIDAR or SAR could be investi-
gated in combination with the above-mentioned methods.

This work was carried out in the Laboratory of Forest Management and Remote Sensing, in the
School of Forestry and Natural Environment, in Aristotle University of Thessaloniki. The lead author
(Stefanos Papaiordanidis) would like to thank Professor loannis Gitas for the helpful discussion and
their insightful comments.

The European Commission support for the production of this publication does not constitute an en-
dorsement of the contents which reflects the views only of the authors, and the Commission cannot be
held responsible for any use which may be made of the information contained therein.
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ASSESSMENT OF LAND SURFACE TEMPERATURE AND DROUGHT INDICES
FOR THE KLERKSDORP-ORKNEY-STILFONTEIN-HARTEBEESFONTEIN
(KOSH) REGION

Noluvuyo Dudumashe, Abraham Thomas
Council for Geoscience, Pretoria 0184, South Africa.

Land surface temperature (LST) is a key calculator of local climate, vegetation growth, and urban
change. Spatial and temporal variation of LST over land use/land cover (LULC) features results in changes
in environmental factors that influence the characteristics of the land surface. In this study, some remote
sensing techniques have been applied to Landsat 8 data acquired during summer and spring seasons of
years 2019, 2018, and 2013 to estimate normalized difference vegetation index (NDVI), LST, normalized
difference built-up index (NDBI), three drought indices viz. vegetation supply water index (VWSI), crop
water supply index (CWSI) and temperature condition index (TCI) and analysed the spatial-temporal
trends in LST among major LULC of an arid part of North West Province of South Africa known as Klerks-
dorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region. The results shows that there is a direct negative
relationship between LST and NDVI. The study compared three drought indices for monitoring the water
scarcity of the area. The finding also indicates a positive relationship between LST and CWSI that is rele-
vant to soil moisture and NDBI. The findings from the study prove the capability of optical remote sensing
in monitoring LST and drought in the region. The study reveals the usefulness of the remotely sensed data
of Landsat 8 satellite in estimating LST and drought changes in the KOSH area. This study also tried to
assess the usefulness of Landsat 8 bands in deriving vegetation index and drought indices for monitoring
drought in the KOSH region during three years (2013, 2018 and 2019).

Keywords: Landsat 8, land surface temperature, drought, remote sensing, vegetation and drought
indices, climate change.

Introduction

Land surface temperature (LST) is the primary climatic parameter in calculating the surface
radiation and the energy exchange (He et al., 2019). Climate change is one of the most critical
challenges that the world faces. Many studies have reported that climate change has a significant
effect on the land surface temperature and its other parameters (Brohan et al., 2006; Hansen et al.,
2010 ). Sim¢ et al. (2016) stated that LST is also important for controlling the dynamics of the
earth’s surface. Land use/land cover (LU/LC) and land surface temperature (LST) is the most im-
portant amid these parameters. Several researchers used LST for understanding changes in temper-
ature fluctuations which are major aspects that change the land use/land cover (Owojori and Xie,
2005). LST is defined as the temperature felt when there is an exchange of long-wave radiation
and turbulent heat fluxes within the surface-atmosphere interface. The LST is being increasingly
used to evaluate climate change in urban zones. Several techniques previously have been applied
for calculating land surface temperature through ground base data, but that is costly (Rehman et
al., 2015). LST is needed for better environmental monitoring and climate change mitigation.

The time-series observations are frequently employed in monitoring approaches related to re-
mote sensing (RS) and LST. The application of time series in the assessment of the climate varia-
bility over an extended period can be improved by the integration of spatial data from multiple sat-
ellite systems (Kothe et al., 2019). The Landsat imageries are the most valuable source of spatial
information at 30-m resolution (Herrero-Huerta et al., 2019). It is also useful in continuous global
coverage to provide an opportunity to characterize human-scale processes (Chen et al., 2017).
Chastain et al. (2019) stated that operational Landsat 8 (OLI & TIRS) could supply a revisit fre-
quency of 8 days at the equator. The Landsat sensors have a high spatial resolution helping in the
monitoring of the urban thermal environment (XIAO et al., 2007a; Sobrino et al., 2012). Thermal
infrared (TIR) bands are very important bands in estimating LST in an area and monitoring cli-
mate change. The USGS recommendation is not to use TIRS Band 11 due to its larger calibration
uncertainty, only Band10 was used in the LST calculation. However, not every remote sensing
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platform has the thermal-infrared bands on their sensor.

Ustin et al. (2004) stated that remote sensing must play a part in providing the data required to
monitor the conditions and change of ecosystem at all spatial scales. This is an increasing field of
environmental scientists. Therefore, acquiring LST from remotely sensed data becomes one of the
important main factors for such studies. Torrion et al. (2014) outlined that LST is associated to
surface energy fluxes, the latent heat flux, and evapotranspiration and water stress. According to
Cammalleri and Vogt (2015), LST is connected to surface longwave emission and calculating soil
moisture. Whereas Duan et al. (2014) stated that considering meteorological and hydrological pro-
cesses in a changing climate is the best parameter in estimating LST. The presented study aimed to
estimate the LST using Landsat 8 images acquired during the year 2013, 2018, and 2019, to map
and monitor the area for changes in LST and drought through drought monitoring indices viz. veg-
etation supply water index (VWSI), crop water supply index (CWSI) and temperature condition
index (TCI), and to compare the results for these three years.

Study area

The Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region was selected as a study
area. The geographic location of the KOSH area is in the North West province of South Africa
(fig. 1). The region comprises four districts, namely Klerksdorp, Orkney, Stilfontein, Harte-
beesfontein, covering an area of 2757 km”. The climate of the region is warm to hot summers
(November to February/March) and cool, dry winters (May to August) are typical. KOSH region is
part of the Witwatersrand gold mining area, underlain by sedimentary, extrusive, and intrusive
rocks of Transvaal Super Group (Thomas, 2020). Figure 2 depicts the land use/land cover of the
area showing that the most area is covered by the grassland cover.
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LAND USE / LAND COVER DISTRIBUTION OF KOSH AREA
BASED ON NATIONAL LAND COVER DATASET 2013-2014
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Fig. 2. Land use/ Land cover distribution of Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) area
based on national land cover dataset 2013-2014

Data and software used for the research

Data used for remote sensing analysis

In this study, the first step was downloading Landsat 8 satellite data (cloud cover of 0%) of
KOSH region from the USGS Earth Explorer website (https://www.usgs.gov/). The level-1 prod-
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uct Landsat 8 data acquired during summer and spring seasons of three-years (2013, 2018, and
2019) were searched. The images were georeferenced using ArcGIS software to the Universal
Transverse Mercator (UTM) Projection System. The images of Landsat 8 (footprint: 171/079) was
used in this study. Satellite data were acquired over two different seasons (end of summer and the
beginning of spring) for three different years to assess and monitor the study over time. Fig 3
shows the extent of the spatial coverage with the study area and Table 1 shows the band details of
the data used. Thermal bands (TIR) were used for the calculation of the land surface temperature
(LST) without being pre-processed. The band 10 was used from Landsat 8 OLI due to larger cali-
bration uncertainty of band 11 found to have.

Table 1
Landsat image characteristics used in this research (Source: NASA 2003, USGS 2015)

Characteristics Landsat 8 OLI/TIRS
Band number 30 m:

Band 1- Coastal aerosol
Band 2 — Blue

Band 3 — Red

Band 4 — Green

Band 5 — NIR

Band 6 — SWIR -1
Band 7 — SWIR -2
Band 9 — Cirrus

15m:

Band 8 — Pan

100m:

Band 10 - TIR -1

Band 11 - TIR -2
Thermal band spectral range Band 10 (10,60 — 11,19 nm)
Band 11 (11,50 — 12,51 nm)
Acquisition dates Summer

26/03/2013

03/02/2018

22/02/2019

Spring

02/09/2013

15/09/2018

02/09/2019

The software used for this study were ArcGIS 10.4 version and ENVI 5.5 version. LST and
Normalized satellite indices were calculated using the raster calculator tool of ArcGIS 10.4. The
shapefile of respective areas were created and area of interest (AOI) was extracted using ArcGIS.

Methodology

Land surface temperature (LST) calculation is one of the steps to determine the drought on the
Earth's surface. The remotely sensed images can be used to derive this information using algo-
rithms that are specifically developed to provide information using ‘RT’ — Real-time Terrain Cor-
rected dataset containing both OLI & TIRS bands. The three bands used in this study are band 4,
band 5 and thermal band 10. The thermal band 10 of this dataset was not processed for atmospher-
ic correction and surface reflectance retrieval for land surface temperature; however, the red and
near-infrared bands (bands 4 and 5) were pre-processed using ENVI software for atmospheric cor-

rection. Later NDVI values were calculated in ENVI software using the red and near-infrared
bands.
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02/09/2013 15/09/2018 02/09/2019

Fig. 3. Preview images of the used data of 2019, 2018, and 2013 to see the extent of spatial coverage
with the extent of the study area

Equations used to calculate Land Surface Temperature with Landsat 8 satellite images

TOA (L4) spectral transmittance

The first step in computing LST is to transform the DN of the thermal infrared band into spec-
tral radiance (LA) by using the following equation obtained from the Landsat user’s handbook. The
reason for transforming the DN was to calibrate for the produced noise from the sensors, which
measure the reflectance from the Earth's surface in the form of Digital Numbers (DN) representing
each pixel.

LA = ML = Qcal + AL, (1)

where ML is the band specific multiplicative rescaling factor from the metadata, AL is the band
specific additive scaling factor and Qcal represents the symbolized values of quantized and cali-
brated standard product pixels (D). The DN of Landsat 8 of band 10 images were converted to
spectral radiance, using the above equation which is given by Rosas et al. (2017).

Brightness Temperature

The second step is to convert the band radiance into brightness temperatures (TB) in Celsius
using a conversion formula given below (equation 2). The TIR data values of band 10 were con-
verted to brightness temperatures (T B), which is the microwave radiance travelling upward from
the top of Earth’s atmosphere, using the thermal constants provided in the metadata file (Yang et
al., 2014). To achieve accuracy for the TB conversion, equation 2 was implemented through the
ATCOR module of ArcGIS. The result in Kelvin was converted to Celsius by adding the absolute
Zero.

50



TB=(K2/(In (K1 /L) + 1)) - 273.15, )

where TB is the satellite brightness temperature in Celsius, and K1 and K2 represent thermal con-
version from the metadata (Suresh et al., 2016). Table 2 shows the constants K1 and K2 used for

the Landsat satellites.

Constants K1 and K2 for the Landsat satellites

Table 2

Constant Landsat 8 (Band 10) Landsat 8 (Band 11)
K1 (watt/meter squared *ster*) 774.89 480.89
K2(Kelvin) 1321.08 1201.14
Rescali ML 0.0003342
escaling AL 0.10
Table 3
Center wavelength for Landsat satellites.
Satellite Band Center Wavelength
Landsat (OLI) 8 10 10.8
Landsat (OLI) 8 11 12

Normalized Difference Vegetation Index (NDVI)

NDVlI is an indicator used to analyse the greenness of the observed area. As Weng et al. (2004)
stated, estimating NDVI is essential since the amount of vegetation present is a factor for LST re-
trieval. NDVI is calculated using the following equation/formula:

NDVI = NIR (band 5) - Red (band 4) / NIR (band 5) + Red (band 4), 3)

where NDVI values range between —1 and 1.

Proportion of Vegetation Cover

Following the NDVI calculation, the vegetation index ( Pv ) was calculated according to the
equation as described by XIAO et al. (2007b). According to Jin et al. (2015) and Quintano et al.
(2015), the proportion of vegetation (Pv) is computed by using soil and vegetation NDVI values
calculated by Equation 4:

Pv =Square (NDVI — NDVImin) / (NDVImax — NDVImin)), 4)

where NDVI is the normalized difference vegetation index. NDVI,,;;, and NDV]I,,,, are the minima
and maximum values of the NDVI (Sobrino and Romaguera, 2004).

Estimation of emissivity
The land surface emissivity was derived from the NDVI as proposed by Ngie et al. (2017). Ac-
cording to Pal and Ziaul (2017), the Ground Emissivity (&) values are calculated using equation 5:

)

e=m*P,+0.986,

where m=0,004 and n=0,986. PV is the proportion of vegetation extracted from equation (4).

Land Surface Temperature

The Land surface temperature (LST) is estimated from the brightness temperature (TB). For
estimating brightness temperatures (TB), it is assumed that the Earth is a blackbody, which is not,
and this assumption can lead to some errors in surface temperature (Ogunode and Akombelwa,
2017). To minimize these errors, emissivity correction is important and this correction applied to
equation 2 to retrieve the LST from TB:
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LST = (TB /(1 + (0.00115 * TB / 1.4388) * Ln(s))) . (6)

The main data processing steps (workflow) to be followed for data analysis using a GIS or a
remote sensing software for retrieving LST from the Landsat 8 data is shown in figure 4.

Input Band 10 Input Band 4 Input Band 5

'

Top of atmospheric spectral Calculate NDVI V2P = VIR
radiance: {LA) = ML * Qcal + AL (band 5) — Red (band 4)/
NIR (band5) + Fed (band 4)

l

Calculating proportion of
vegetation Pv: Pv = Sguare [(NDWVI —
NDVImin)/ (NDVIimax — NDVImin))

! | l

Conversions of radians to at sector: Determination of ground
TE=(K2/(In{K1/L)+1))-273.15 emissivity: £ = m* Pv + 0.986
| Calculating L5T: -

LST = (TB/ (1 + (0.00115
* TB/ 1.4388) * Ln(z)))

l

‘ LST result

Fig. 4. LST retrieval flowchart

Normalized Difference Built-up Index

The NDBI is an index which is used to detect built-up area from other LULC types. The value
of the NDBI is between -1 and 1, where the negative values indicate water body and positive value
represent areas that have higher built up and other paved surface areas; whereas zero NDBI values
represent areas covered with vegetation (Balew and Korme, 2020). This index can be computed as:

NDBI = Bswir — Bnir/Bswir + Bair, (7

where Bswir is shortwave infrared band reflectance (band 6 of Landsat 8).
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Drought indices: temperature condition index (TCI), crop water stress index (CWSI) and vege-
tation water supply index (VSWI)

Three drought indices were computed in this study to compare the drought in three different
years. The first drought indices were calculated using the Temperature Condition Index (TCI) al-
gorithm. Temperature Condition Index (TCI) is an algorithm developed by Kogan (1998) for de-
tecting drought by viewing the difference from the surface temperatures level resulting in water-
saturated soil, which affects vegetation stress level (Equation 8).

Secondly, we calculated the drought using the crop water stress index (CWSI) to identify areas
where the crops are under water stress. Crop Water Stress Index (CWSI) is a technique for detect-
ing drought due to water lost through evapotranspiration (Equation 9). Lastly, the vegetation sup-
ply water index (VSWI) calculated by dividing NDVI values with LST values (equation 10) was
also used in identifying areas with drought. The three drought indices have an opposite index val-
ue explanation; zero in TCI indicates drought condition, but the wet condition in CWSI. The last
index vegetation water supply index was used. Vegetation supply water index is the water supply
in the vegetation. The reason for using the three indices was to compare the drought results and see
if the algorithm can identify the same area with drought.

TCI = (LSTmax-LST/LSTmax-LSTmin)*100 , (8)
CWSI = LST-LSTmin/LSTmax-LSTmin, 9)
VSWI=NDVI/LST . (10)

Statistical analysis is very important to analyse different variables. In this study, descriptive
statistical analysis was applied for analysing LST, NDVI and NDBI for each study period. The
results from this statistical analysis mainly show the mean, minimum, maximum and standard de-
viation of the calculated indices for different periods of study.

Results and discussion

The spatial-temporal pattern of Normalised difference vegetation index

Figure 5 and figure 6 show the spatial distribution/variation of NDVI values for the summer/
spring periods of the year 2013, 2018 and 2019. The most affected areas are in the northern, mid-
dle, western and central parts of KOSH. Particularly the middle region of the KOSH shows an ex-
treme drought condition. Results presented in figure 5 (summer 2013, 2018 and 2019), indicate
that NDVI values observed were ranged from —0.27 to 0.64. Most areas of the KOSH had low
NDVI because of low vegetation cover and high vegetation in areas with vegetation. However,
places seen to the east of KOSH had lower NDVI values because the area's lack of vegetation cov-
er and bare surfaces dominate the area 2018. In 2013, the maximum NDVI value was 0.57 and a
minimum of -0.33 and with a mean of 0.17. However, the minimum, maximum and mean NDVI
values in 2018 were increased to -0.27, 0.64, and 0.25. Furthermore, in the year 2019, the maxi-
mum NDVI was 0.63 but in the spring of 2019, it was declined to 0.59 (fig 6), while the mean de-
creased from 0.08 to 0.04 (table 4).

Table 4
Statistical summary of NDVI values in KOSH (2013, 2018 and 2019).

Year Mean Max Min STD
2013 Summer 0.17 0.57 -0.33 0.04
2013 Spring 0.11 0.56 -0.41 0.03
2018 Summer 0.25 0.64 -0.27 0.07
2018 Spring 0.13 0.60 -0.30 0.03
2019 Summer 0.29 0.63 -0.29 0.08
2019 Spring 0.14 0.59 -0.32 0.04
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The spatial-temporal pattern of Land Surface Temperature

Figure 7 and figure 8 shows the spatial pattern results of LST and Table 5 shows statistical in-
formation. The green colour indicates that the areas have very low temperatures with certain land
cover such as; the body of water, woodlands and area of shadows, or clouds (fig. 7 and fig. 8). On
the three images selected in summer the north-west, south-west, northeast and east-south parts ex-
perienced higher LST ranging from 25.09 — 36.83 and in the areas with lower LST it ranges from
15.44 — 26.25. However, in some grassland areas, the LST ranges from 22.54 to 29.56. In spring
results, 2013 and 2019 the maps show close similarity results than the results of 2018. LST value
is high in most of the area because the area is mostly covered by short grass. In the spring season,
high values are seen because the grass is very short and dry. The south-east part of the area is cov-
ered with water (river) and vegetation (crops/woodlands) so those areas have low LST and high
NDVI values. The western and southwest part with grassland show high values of LST. NDVI has
a negative correlation with LST meaning that the higher the NDVI the lower the LST. Similarly.
In areas of the higher LST values, one can find lower NDVI values. There is a decrease in the val-
ues of statistical parameters between the season in all three years because of the difference in the
climate of these seasons. The finding proves that where the region has high vegetation cover, the
land surface temperature is less in such regions and where there is lesser vegetation cover, then the
land surface temperature is higher.

Table 5
Statistical summary of LST (°C) values in KOSH and its surrounding (2013, 2018 and 2019)
Year Mean Max Min STD
2013 Summer 23.35 34.23 15.44 1.32
2013 Spring 22.44 34.07 9.14 1.97
2018 Summer 37.61 48.39 18.80 1.22
2018 Spring 34.72 94.97 18.37 2.53
2019 Summer 28.90 3591 21.06 1.49
2019 Spring 27.73 41.35 15.44 1.95

The spatial-temporal pattern of Normalised Difference Built Index (NDBI)

Results indicate that during the year 2013 summer, the Normalised Difference Built Index
(NDBI) values ranged from — 0.45 to 0.27 with the lowest temperature and highest temperature of
0 and 100 °C (fig. 9). In the year 2018, summer the NDBI values ranged from — 0.54 to 0.33 with
the lowest temperature and highest temperature being 0 and 100 °C respectively (fig. 9). Whereas
in the year 2019 the NDBI values ranged from -0.49 to 0.26. However, for the spring season in
2013, the range of NDBI is from -0.46 to 0.30, in the year 2018 it is between -0.46 to 0.73, and in
the year 2019, it ranged between -0.48 to 0.27 (fig. 10). NDBI has a positive correction with LST
that is the lower the NDBI the lower the LST and the higher the NDBI indicate higher the LST. In
the study, there was a positive relationship between NDBI and LST. According to Faris and Reddy
(2010), Built-up land plays the biggest role in increasing the temperature because of the hard con-
crete surface which contains almost nil water storage which leads to less humidity also.
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Table 6

Statistical summary of NDBI values in KOSH and its surrounding (2013, 2018 and 2020)

Year Mean Max Min STD
2013 Summer 0.05 0.27 -0.45 0.05
2013 Spring 0.11 0.30 -0.46 0.04
2018 Summer -0.00 0.33 -0.54 0.08
2018 Spring 0.11 0.73 -0.46 0.04
2019 Summer -0.04 0.26 -0.49 0.08
2019 Spring 0.08 0.27 -0.48 0.04

Drought indices monitoring

The spatial-temporal pattern
of vegetation supply water in-
dex (VWSI)

VWSI can reflect the state of
water supply for vegetation; but
due to the great difference in
the value ranges of NDVI and
LST, very small values of
VWSI were generated. VWSI
values of the years 2013, 2018,
and 2019 show most areas have
experienced moderate to severe
drought during the summer sea-
son. Whereas in spring seasons
of these years, there is a less
extreme severe drought in the
area. Figure 11 shows more are-
as experience severe to moder-
ate drought in all three years in
a similar pattern in the summer
season. The areas with extreme
drought in the area are mostly
the bare soil area, for example
in mine tailing dumps in the
area. The grassland regions are
the major or mainland cover
with severe drought impact.
Figure 12 shows most of the
areas experienced moderate
drought with some parts having
a severe drought. Most of
KOSH shows a dominant mild
to no drought condition in fig-
ure 12 and figure 11 shows are-
as with severe drought with
moderate and no drought areas.
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The spatial-temporal pattern of crop water supply index (CWSI)

Crop water supply algorithm show results of the spread of drought-affected land cover-open
class land. CWSI method for all three years showed locations with water stress (fig. 13). CWSI is
very different due to the appearance of undeveloped land which has a dominant value of high sur-
face temperatures. CWSI is more relevant to the condition of having low soil moisture which
proved that in many areas there is not much water on the surface. Figure 14 shows spring season
results were in the year 2018 the results shows differs than the year 2013 and 2019.
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Fig. 13. Spatial-temporal pattern of CSWI dynamics of KOSH in the summer season of the year
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The spatial-temporal pattern of temperature condition index (TCI)

The results of TCI and CWSI methods in the year 2013 help to detect similar areas where there
is drought. Figure 15 and figure 16 show the result of TCI for the summer season of the year 2019
and spring season of the year 2018.
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From the TCI results, it can be seen that the dominant value of high surface temperatures seen
in the years 2018 and 2019 matches with areas of high drought. In the year 2019, the appearance
of TCI and CWSI is very different due to the appearance of undeveloped land which has a domi-
nant value of high surface temperatures. TCI in 2019 is still able to distinguish the wet location. In
all three images in the summer seasons of the study period, more areas that are experiencing
drought can be detected (fig. 16).
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Conclusion

The presented study could successfully estimate land surface temperature (LST) and drought
indices and analyse the changing pattern of the LST and other indices. The results show that high
surface temperature values have a positive correlation with drought events in an area; the higher
the surface temperature the higher the drought and a negative correlation with wet conditions. The
drought indices VSIW, TCI and CWSI methods were tested for drought monitoring. The results
also show that the LST helps to determine areas with drought without making use of drought indi-
ces. Grassland that covers most of the area in the study area experience more drought than other
land covers. The finding shows areas where there is grassland cover, the LST values are high;
whereas the cultivated area shows low values of LST. The findings show that LST has a negative
relationship with NDVI and positive relationship with NDBI. The study also indicates mean varia-
tion between NDBI, NDVI and LST. The mean of the LST increases from 2013 — 2019 on both
seasons. The results also verified that some areas have experienced drought mostly in areas with
grassland cover. Most areas of the KOSH had low NDVI because of low vegetation cover. The
VSWI, TCI and CSWI show results of the spread of drought across the area where some areas ex-
perience severe drought. The results indicate that LST in certain parts of the area especially to the
southwest, northwest and northeast regions experience high LST values. It is recommended that
LULC mapping should also be conducted for particular periods of study to understand the dynam-
ics of land surface temperature fluctuation concerning a specified period.

The study has shown the importance of land use/land cover in estimating the land surface tem-
perature. An inverse (negative) relationship between LST and water bodies and vegetation cover
was found while a direct positive relationship between LST and built up, and barren land area was
observed. It was concluded that the increase in vegetation and water bodies can greatly decrease
the land surface temperature of any region. The relationship between the LST and VI are negative
which implies that the lower the LST the higher the NDVI and the higher the LST the lower the
NDVI. Vegetation plays the biggest role in reducing the land surface temperature from increasing
whereas on the other hand built-up area plays a major role in increasing land surface temperature.
Therefore, a better option to have lower LST is to reduce the built-up land when the population is
growing; rather increase in vegetation cover in the built-up area can reduce the LST.

The authors would like to register their sincere thanks to the Council for Geoscience for various re-
sources provided for this study and the National Research Foundation of South Africa for the grant pro-
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Ecosystem assessment plays an important role in ensuring regional ecological security and promoting
the coordinated development of social economy and ecological environment protection. Remote sensing
technology can objectively and quantitatively evaluate the spatial-temporal change of ecological environ-
mental quality. This paper uses multi-source data to comprehensively analyze land surface temperature,
land use and land cover, net primary productivity (NPP) and remote sensing ecological index in 2013 and
2017. The comprehensive evaluation system of the ecological environment in Dazhangxi basin is estab-
lished by qualitative analysis of the ecological environment from multi perspectives and multi spatial and
temporal scales. The results showed that: 1) The urban construction land at the intersection of Dazhongxi
River and Minjiang River have expanded rapidly from 2013 to 2017, and the thermal environment effect is
enhanced, forming local heat island effect. 2) The vegetation coverage in the study area is high, reaching
more than 60%. Compared with 2013, the types of forest land and agricultural land decreased significantly
in 2017, while the construction land and unused land increased significantly. 3) NPP showed a downward
trend, and the reduction area was mainly forest. 4) Compared with 2013, the higher ecological and lower
ecological zone decreased, while the medium ecological zone increased in 2017, which means the better
ecological environment has been damaged and the areas with serious ecological environment problems
have been partially improved. 5) During 2013-2017, the ecological environment of the study area showed a
trend of slight deterioration, but it was alleviated by human intervention.

Keywords: ecological environment, comprehensive assessment, dynamic monitoring, remote sensing
technology, Landsat, Dazhangxi basin.

Introduction

With the rapid development of economy and society, the ecological environment is inevitably
suffering huge damages, such as losses of natural resources, reduction in biodiversity, environ-
mental pollution and global climate change (Almeida et al., 2017; Chai, Lha, 2018; Ostrom, 2009).
In order to achieve the goal of sustainable development, ecological environment has attracted more
and more attention (Jing et al., 2020; Liu et al., 2018). Monitoring and comprehensive assessment
of ecological environment, proposing protection measures and enhancing ecosystem services have
become a hotspots in the field of environmental research. However, it is difficult to comprehen-
sively evaluate the ecological environment due to its complexity and inherent interdisciplinary
characteristics (Miao et al., 2016; Vorobyev et al., 2015).

Most of the previous studies evaluated the ecological environment from one or just a few as-
pects, which limits the accuracy of the assessment. Wang et al (2019) and Zhang et al (2020) re-
ported the relationship between ecological environment and land use simulation, without consider-
ing other factors. Zheng et al (2020) reported the impact of urbanization on ecological environ-
ment. Li et al (2020) and Wang et al (2019) discussed the relationship between economy develop-
ment and ecological environment. However, the reasonable integration of the above evaluation
indicators into a comprehensive evaluation model requires more in-depth research.

Modern remote sensing earth observation system is widely used recently for the environmental
evaluation study (Kurbanov, 2016; Jing et al., 2020). It provides multi-source data for extracting
and synthesizing ecological evaluation indicators. Besides, remote sensing technology has great
potential in large-scale monitoring and quality assessment of ecological environment (Kurbanov et
al, 2014; Zhang et al., 2017; Niu, Wang, 2017). In 2006, the State Environmental Protection Ad-
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ministration (2006) regulated the ecological environmental status index (EI) based on biological
abundance index, vegetation cover index, water network density index, land degradation index,
and environmental quality index. All of these indices have been widely applied in many research
works. However, many scholars have tried different adjustments to the indices and weights due to
the heterogeneity of different research regions (Zhu et al., 2017; Meng, Zhao, 2009). Therefore, EI
cannot be used universally in different research areas.

Remote sensing ecological index (RSEI) is a new type of remote sensing based index for com-
prehensively ecological evaluation, the evaluation factors include greenness, heat, dryness and hu-
midity, which are mainly obtained from satellite images (Gupta et al., 2012). These four indicators
can be easily obtained and integrated into RSEI, thus easier to monitor regional ecological envi-
ronment variation (Xu, 2013).

In China, different indicators reflect the ecological and environmental problems in different re-
gions. One reason for this is the complexity and particularity of natural environmental conditions,
the other is the long history of human activities and their profound impact on the ecological envi-
ronment (Chai, Lha, 2018; Chi et al., 2018). Dazhangxi is the largest tributary of the lower Min-
jiang River in central Fujian Province, China. It plays an important role in regulating climate and
maintaining ecological balance of the area. In addition, there have been limited studies on multi-
temporal and comprehensive ecological environment evaluation of this basin. Combined with the
Comprehensive Planning of Fujian Dzhangxi Basin Report (Fujian Water Resources and Hydro-
power Institute, 2014), this study could give more detailed evaluation of the ecological environ-
ment in Dazhangxi.

The main purpose of this study is to provide scientific basis for ecological environment protec-
tion, comprehensive management, and sustainable development of Dazhangxi. Therefore, the fol-
lowing processes will be conducted in this study.

(1) Calculate the land surface temperature (LST), land use and land cover (LULC), net primary
productivity (NPP) and RSEI in 2013 and 2017, respectively. (2) Analyze the ecological environ-
mental indicators and their relationship between the two periods of the study area comprehensively
and quantitatively. (3) Explore the spatial difference of ecological environment quality and discuss
the results.

Material and Methods

Study area

Dazhangxi (at 118°59'14" to 119°1629"N latitude and 25°49'06" to 25°59'32"E longitude) is
the largest tributary of Minjiang River downstream, which is located in the central part of Fujian
Province, China (fig.1). The drainage area of Dazhangxi is 4,843 km”. The total length of the river
is 234 km, and the average river slope is 2.1%. Dazhangxi has been the main waterway connecting
the three coastal counties with the surrounding areas. The basin is rich in water resources and has
many water diversion projects. Since the founding of the People's Republic of China, a large num-
ber of reservoirs and power stations have been built. This provides important conditions for local
economic and social development. Meanwhile, due to human activities and hydropower develop-
ment, the environment has been greatly affected.

Therefore, it is very important to quantitatively retrieve and monitor the LULC, LST, NPP and
RSEI by remote sensing technology, which is beneficial to the protection of natural environment,
human economy and ecology. It is not only real-time, rapid and accurate, but also significantly
cost-effective in terms of manpower field investigation.
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Fig.1. Location of study area and true color image

Methodology

The overall research process is shown in Fig. 2. It illustrates the framework for evaluating eco-
logical environment using Landsat and ancillary data. The main steps include collection and pre-
processing of remote sensing and other ancillary data, extraction of variables from remote sensing
and ancillary data, evaluation of ecological environment from four aspects, and analysis of overall
ecological environment of study area.

Data collection and preprocessing

Table 1 summarizes the data sets used in research, including two Landsat 8§ images dated on
October 23 of 2013 and December 21 of 2017, the ASTER Global Digital Elevation Model
(GDEM), MODIS product data MOD11A1, weather station data, and the Comprehensive Planning
of Fujian Dazhangxi Basin Report of this research area. Both Landsat images were calibrated by
radiometric calibration, atmospheric correction and topographic correction in ENVI 5.5. GDEM
with 30-m cell size were used for the topographic correction. Both images and GDEM data have
the same Universal Transverse Mercator (UTM) coordinate system with World Geodetic. The pan
sharpening method was used to fuse Landsat images to improve the spatial resolution for subse-
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Fig. 2. The framework for ecological environment assessment
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Table 1
Data sets used in research

Data sets Description

Landsat 8 OLI images on October 23, 2013
Landsat 8 OLI images (LC81190422013296LGNO1) and December 21, 2017
(LC81190422017355LGN00)

Aster Global Digital Elevation Model (GDEM)data with

30m GDEM 30 m cell size
MODI11Al Daily temperature product data
Weather station data Daily rainfall and temperature data of Fujian in 2013
and 2017
Comprehensive Planning of Fujian Dazhangxi Environmental impact report on comprehensive planning of
Basin Report Dazhangxi Basin

Extraction of variables from remote sensing

Normalized difference vegetation index (NDVI), normalized difference building index (NDBI)
and modified normalized difference water index (MNDWI) are used in this study. The principle of
NDVI is that vegetation has different absorption in near-infrared band and red band. Vegetation
information can be highlighted by calculation, so it is often used to characterize the coverage of
surface vegetation. NDBI is a remote sensing index, which is used to distinguish urban and other
building information. Xu (2005) proposed MNDWTI on the basis of NDWI, which can better reveal
the micro characteristics of water body. Their calculation is shown in Table 2.

Table 2
Calculation of indices
Indices Calculation Landsat 8 bands Band math
NDVI (pNIR - pR)/(pNIR + pR) b5,b4 (b5-b4)/(b5+b4)
NDBI (pMIR - pNIR)/(pMIR + pNIR) b6, b5 (b5-b4)/(b5+b4)
MNDWI (pGreen - pMIR)/(pGreen + pMIR) b3,b6 (b3-b6)/(b3+b6)

Thermal environment model

(1) Impervious Surface Coverage (ISC)

The increase of ISC is a significant feature of urbanization and has a significant impact on re-
gional ecological environment factors. In this study, normalized difference impervious surface in-
dex (NDISI) is used to extract impervious surface (Xu, 2008). Based on the spectral difference be-
tween impervious surface and other surface features, single band or multi band combination re-
mote sensing is the most commonly used method to extract impervious surface. As a method that
can automatically and quickly extract impervious surface in a large range, the principle of NDISI
index is to construct strong reflection group and weak reflection group of impervious surface in
spectral band of remote sensing image, and carry out band operation, so as to expand the contrast
between impervious surface and sand soil, vegetation, water body and other surface features, so as
to enhance the impervious surface information. The formula of the index is as follows:

TIR —(MNDWI + NIR + MIR,)/3
TIR + (MNDWI + NIR + MIR,)/3

TIR, NIR and MIR; represent thermal infrared, near infrared and mid infrared bands of remote
sensing image respectively, and MNDWI refers to modified normalized differential water index.
Both MNDWTI and TIR bands need linear stretching of 0-255 gray level to unify the quantization
series of each band. The NDISI results were normalized and converted to ISC for further analysis.
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The calculation formula is as follows:

_ NDISI: — NDISInin

x100% . (2)

ISC is classified by mean-standard deviation method (table 3), which is also used in the follow-
ing classification.

Table 3
Criteria for classification of impervious surface coverage
ISC levels Division basis
First ISCioan+ S<ISC,;
Second ISC1oan+0.55<ISC,;i< ISCroan+ S
Third ISCioan- 0.5 <ISC,; <ISCean+0.55
Fourth ISC,eon- 8 <ISCi<ISCpoan- 0.55
Fifth ISCni<[SCmean -S

Note: ISC,;is the normalized pixel value, ISC,.,,1s the average value of all pixels after normalization, s is the
standard deviation.

(2) LST inversion

The atmospheric correction method and single window algorithm are used to retrieve the LST,
and MODI11AL1 are used to verify the accuracy. Finally, the LST retrieved by atmospheric correc-
tion method is selected to classify the heat island grade.

Atmospheric correction method: firstly, the influence of the atmosphere on the surface thermal
radiation is estimated, and then this part of the atmospheric impact is subtracted from the total
thermal radiation observed by satellite sensors to obtain the surface thermal radiation intensity, and
then the thermal radiation intensity is converted into the corresponding surface temperature.

The brightness value L, of thermal infrared radiation received by the satellite sensor consists of
three parts: the upward radiance of the atmosphere, the energy of the real radiance of the ground
after passing through the atmosphere, and the reflected energy of the downward radiation from the
atmosphere to the ground. The expression of thermal infrared radiance value L, received by satel-
lite sensor (radiative transfer equation) can be written as:

L, =[&pq,+(=&)Lc+LT (3)

where, ¢ is the surface emissivity, Ts is the real surface temperature (K), B(Ts) is the blackbody
thermal radiance brightness, and t is the atmospheric transmittance in the thermal infrared band.
Then the radiance B(Ts) of the blackbody with temperature T in the thermal infrared band is:

B(T)=[L,~LT—t(-&)L]/ze . (4)
T, can be obtained by the function of Planck's formula.
T =K,/In(K,/B(T,)+1). (5)

For TIRS band10, K; = 774.89 w / (M2 * um * sr), K, = 1321.08 K. LST is divided into five
grades by means of mean-standard deviation method: high temperature zone, sub high temperature
zone, medium temperature zone, sub low temperature zone and low temperature zone. Sub high
temperature zone and high temperature zone are considered as heat island area.
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(3) Vegetation fractional coverage (VFC)
The calculation of VFC was shown below:

FVC=(NDVI-NDVI,,)/ (NDVI,, —NDVI,,) . (6)

According to the situation of remote sensing images, NDVI,; and NDVI,, are replaced by
NDVlin and NDVI,,.« respectively. Due to the inevitable noise, NDVI,,;, and NDVI,,,x generally
take the maximum and minimum values within a certain confidence range, and the confidence val-
ues are mainly determined as 5% and 95% according to the actual situation of the image.

LULC classification

The automatic decision tree method is used to classify the images of Dazhangxi Basin in 2013
and 2017. The decision tree method obtains the classification rules through the experience of ex-
perts, simple mathematical statistics and induction methods, and carries out remote sensing classi-
fication. The classification rules are easy to understand, and the classification process is in line
with human cognitive process, and the biggest feature is the use of multi-source data. NDVI,
MNDWI, NDBI, ISC and LST are selected as auxiliary data for decision tree classification. Ac-
cording to the LULC classification standard in 1984, the land in the study area is divided into six
categories: construction land, unused land, farmland, water body area, forest and grassland.

Two ROlIs are drawn independently on Google Earth, which are used to model and verify the
classification. According to the separability report of ROI, it is greater than 1.99, which proves
that the selection of ROI is very reasonable. After classification, principal component analysis and
cluster analysis are used to process the classification results.

NPP estimation

CASA model was used to retrieve NPP, considering the effects of solar radiation, temperature
and precipitation. Based on Landsat 8 OLI and meteorological data, NPP estimation models for
different land types in the Dazhangxi Basin were constructed. Compared with other NPP of vege-
tation at home and abroad, CASA model is more simple and convenient. The parameters can be
determined respectively by using remote sensing information extraction and GIS, which avoids
unnecessary errors caused by artificial simplification or estimation of parameters due to lack of
parameters. The specific calculation process of CASA model is as follows:

NPP(x,t) = APAR(x,t)* £(x,1) , (7)

x is the spatial position and t is the time; NPP (x, t) is the NPP (gC-m™-month™) of pixel x in t
month; APAR (x, t) is the photosynthetic effective radiation absorbed by pixel x in t month (MJ-m
Z.month™); € (x, t) is the actual light energy utilization rate of pixel x in month t (gC-MJ™).

According to formula (7), NPP (x, t) is determined by APAR(x,t) and €(x,t), and APAR(x,t)
can be calculated as (8):

APAR(x,t) = O(x,t)* FPAR(x,t)*0.5, (8)

Q (x, t) is the total solar radiation at pixel x in month t; FPAR (x, t) is the absorption ratio of inci-
dent photosynthetically active radiation by vegetation layer; the constant 0.5 represents the propor-
tion of solar effective radiation (wavelength 0.38 ~ 0.71 um) available for vegetation in total solar
radiation. €(x,t) can be calculated as (9):

- * * *
ex, 1) =g, Toeny* Toaesy " Wiy » )

Teixp and Teyy) denote the stress effect of low temperature and high temperature on light energy
utilization efficiency, Weyy 1S the influence coefficient of water stress, and €, is the maximum
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light energy utilization rate of vegetation under ideal conditions, which is related to vegetation
types. The maximum photosynthetic utilization rate of Chinese typical vegetation simulated by
Zhu et al (2006) was used here. In particular, the farmland in the study area are mainly evergreen
broad-leaved forest and evergreen coniferous forest. According to the research results, the average
value of evergreen broad-leaved forest and evergreen coniferous forest (0.687) is taken as the max-
imum light energy utilization rate of forest land.

(1) Calculation of Q(x,t)
O(x,1) = 0,* (a+b*%), (10)

Q is the monthly total solar radiation received by the earth's surface; Q, is the monthly astronomi-
cal total radiation; n/N is the percentage of monthly sunshine. a and b are empirical coefficients,
which are taken as 0.25 and 0.50 respectively. FAO suggests that this should be set when no meas-
ured solar radiation data can be used and the accuracy correction of a and b parameters is not im-
proved (Wang et al., 2014). The monthly total astronomical radiation Q, is calculated by the meth-
od of daily summation of the total astronomical radiation Q;, and the daily total astronomical radia-
tion is calculated by formula (11)

T
Qi:%*pz*(a)osin(psin5+cosqocos§sina)), (1D

Q; is the total daily astronomical radiation (MJ 'm'z-D'l); T is the period (24 % 60 x 60s); Gsc is the
solar constant (13.67 x 1074 MJ -m’z-s'l); p is the relative distance between the sun and the earth; o,
is the sunset angle (rad); ¢ is the geographical latitude (rad); o is the solar declination (rad). The
relative distance between the sun and the earth is calculated by equation (12).

1

P= (12)
140.033c0s 277 7
365

J is the day ordinal number of a day in the year, from 1 January 1 to 365 December 31. The sunset
angle oy is calculated by equation (13)

@, = arccos(—tan@tanJ) , (13)

The declination of the sun is calculated by equation (14)

2]
6=0.409 sin(===—1.39
(365 ). (14)

(2) Calculation of FPAR (x,t)

Because the FPAR estimated by NDVI will be higher than the measured value, while the FPAR
estimated by SR will be lower than the measured value, it is necessary to obtain the actual photo-
synthetic effective radiation absorption ratio (FPAR) by adjusting coefficient a (0.5 in this study).

FPAR(x,t) = a* FPAR, (., +(1—a)* FPARg, . (15)

FPARNpviy, ) and FPARggr( 1) are the proportion coefficients of photosynthetic effective radiation
absorption of vegetation canopy calculated by NDVI and SR, respectively, which are calculated by
(16) and (17).
NDVI(x,t)-NDVI, ..
NDVI(x,) — —*(FPAR_, — FPAR
’ NDVI.  —NDVI.

i,max i,min

FPAR )+ FPAR . (16)

‘min
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In equation (16), NDVI(x, t) is the NDVI of pixel x in month t. NDVI; .« is the value of NDVI
with confidence level of 95% for the i-th land cover type, and NDVI; , is the value of NDVI con-
fidence level of 5% for unused land; the values of FPAR,,;, and FPAR,.x are 0.001 and 0.95, re-
spectively.

SR(x,t)— SR, ., .
SR(x,t) = SR. —SR (FPARmax _FPARmin)+FPARmin . (17)

SR(x, t) is the ratio vegetation index of pixel x in month t (18); SR; max 1s the value of NDVI with
confidence level of 95% for the i-th land cover type, and SR; i, is the value of NDVI confidence
level of 5% for unused land; the values of FPAR,,;;, and FPAR . are 0.001 and 0.95, respectively.

FPAR

1- NDVI(x,1)
(3) Calculation of Tg](x’t)
Ty =0.8+0.02*T, (x)—0.0005*[T,, Xr, (19)

Topi(x) is the optimum temperature for plant growth, which is defined as the average temperature
of the month when the NDVI value reaches the highest in a certain region in a year. For the study
area, the average temperature in July is taken as the optimum; when the average temperature in a

certain month is less than or equal to -10°C, Tgyx is taken as 0.

(4) Calculation of Teyx )
Ty =1.184/ {1+exp[0.2*(T,,, (x) ~10 = T(x, )]} *1/ {1 + exp[0.3* (T

() =10+ T(x,0))]} (20)
When the average temperature of a month T(x, t) is 10°C higher or lower than the optimum

temperature Top(X), the value of Tgy« ) in the month is equal to half of the value of Tey(x,r) Wwhen the
monthly average temperature T (X, t) 1s the optimal temperature T, (X).

(5) Calculation of We(yy
W, (x,0)=0.5+0.5*C(x,1)/ C,(x,1) , 21

C(x,t) is the actual regional transpiration (mm), which is calculated according to the regional actu-
al evapotranspiration model established by Zhou and Zhang (1995) (Eq. 22); Cy(x,t) is the regional
potential evapotranspiration (mm), which is calculated according to the complementary relation-
ship between EET and PET (Luo, 2010) (Eq. 23). The required parameter data are provided by
monthly average temperature T(x, t) and monthly total precipitation W(Xx, t).
B r e Rn(t* + Rn* +r o Rn)
(r+Rn)e(r*+Rn’) ~’
2PET = Ep+ EET | (23)

r 1s the monthly accumulated precipitation (mm); R,, is the regional accumulated surface net radia-
tion. Since many parameters for calculating the net surface radiation are difficult to obtain, they
can be estimated by using the empirical model (Eq. (24)) established by Zhou and Zhang (1996).

EET (22)

Rn = (Eper)’ x[0.369+0.598(22)°%] (24)
r 2

Ep in equations (24) and (25) is local potential evapotranspiration (mm), which is calculated by
using the vegetation climate relationship model (Thornthwaite, 1948) as formula (25).
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Ep =2037.98-18.8308LAT —4.5801LONG —0.157861ALT , (25)

LAT is the latitude of the research site, LONG is the longitude of the research site, and ALT is
the altitude of the research site.

NPP was divided into five grades by mean-standard deviation method: high biomass area, sec-
ondary high biomass area, medium biomass area, secondary low biomass area and low biomass
area. The high biomass area and the secondary high biomass area were regarded as the areas with
rich biomass.

RSEI ecological index

RSEI includes four important indicators of natural ecological environment: greenness, humidi-
ty, heat and dryness. Among the many natural factors reflecting ecological quality, these four fac-
tors are closely related to human survival, and are also the most important indicators for human
beings to intuitively feel the quality of ecological conditions. Remote sensing technology can ob-
tain the information of these four indicators from remote sensing images, such as vegetation index,
humidity component, surface temperature and soil index to represent greenness, humidity, heat
and dryness respectively

RSEI = f(NDVI,WET,LST,NDSI) , (26)

NDVI is vegetation index; Wet is humidity component; LST is surface temperature; NDSI is soil
index. NDVI is undoubtedly the most widely used vegetation index, which is closely related to
plant biomass, leaf area index and vegetation coverage. Therefore, NDVI is selected to represent
the greenness index. The brightness, greenness and wetness obtained by tassel cap transformation
have been widely used in ecological environment monitoring. The humidity component reflects
the humidity of water, soil and vegetation, which is closely related to ecology. Therefore, the hu-
midity index of this study is represented by wetness:

WET =0.0315p, +0.2021p, +0.3102p, +0.1594p, —0.6806 p, —0.6109p, . (27)

where: pi(i = 1,...,5, 7) is the reflectivity of each band. LST uses the best atmospheric correction
inversion results after the interactive accuracy verification of MOD11A1 data to obtain the index.
The NDSI is selected as the dryness index. However, in the regional environment, there isa consid-
erable number of construction lands, which also cause the drying of the surface. Therefore, the
dryness index can be synthesized by the soil index (SI) and the building index (NDBI).

NDSI =(SI+1BI)/2, (28)
where
SI=[(ps+p)—(p,+p)D)/ (o5 + p5)+ (0, +p)] " (29)
NDBI = (ps —p4)/(,05 +p,) 5 (30)

Principal component analysis (PCA) is a multi-dimensional data compression technology
which selects a few important variables by orthogonal linear transformation. In this study, PCA is
used to integrate indicators. Before this transformation, we must normalize these indices and map
their values to [0,1]. Finally, the RSEI based on PC1 is between [0,1]. The closer to 1, the better
the ecology. The comprehensive representativeness of RSEI can also be analyzed from the correla-
tion between RSEI and each index. The stronger the correlation between RSEI and each index is,
the more comprehensively it can represent each index.

RSEI is divided into five grades by means of a mean-standard deviation method: excellent eco-
logical area, sub optimal ecological area, medium ecological area, sub poor ecological area and
poor ecological area.
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Results and discussion

Remote sensing indices

(1) NDVI

Figure 3 is the overall trend of NDVI distribution in 2013 and 2017, the high values are mainly
concentrated in the upper, middle and lower right parts of the basin, and the low values are distrib-
uted in the west and northeast of the basin. According to the distribution of power stations reported
in the Report, it can be seen that the low value of NDVI in the study area is mainly spread around
the power station location. The low value in the northeast is mainly caused by the underlying sur-
face being residential area. The NDVI value in 2017 was generally lower than that in 2013. It is
obvious that taking the power station as the center, the relevant building land has been built or ex-
panded around it, and the road facilities connecting the main stream of Dazhangxi and the power
station have been built, which has affected the NDVI value of the whole research basin to a certain
extent, and has an impact on the ecological environment.

(2) MNDWI

There is no significant difference in the distribution of MNDWI values between the two years
(fig. 4). However, due to the fact that the image of 2013 is October and the image of 17 years is
December, it is obvious that the discharge of 2017 is less than that of 2013 in the main part of
Dazhangxi, especially in the west of the trunk part.

(3) NDBI

Compared with 2013, the building area increased in 2017 (fig. 5), and the fragmentation of
building patches increased. In the western part of the basin, the increase is obvious in the western
part of the basin, while the increase in other parts is not obvious, but the patch becomes more frag-
mented. This may be due to the construction of power stations in the basin and the intervention of
human activities.

()2013 (b)2017

NDVI

5 10
[ e— )

Fig. 3. NDVI of 2013 and 2017
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Fig. 4. MNDWI of 2013 and 2017
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Fig. 5. NDBI of 2013 and 2017

Thermal environment

ISC

As can be seen from figure 6, compared with 2013, the first-class area in 2017 decreased, the
second-class area increased slightly, the third-class area increased more significantly, and the area
of fourth and fifth class areas decreased significantly. Combined with the situation of the study
area, from 2013 to 2017, the buildings developed from contiguous to scattered, the road area in-
creased, the forest area decreased, and the forest land gradually developed to sparse forest land.

(2)2013 (b)2017
TIPS s g x ¢ y S

Fig. 6. ISC 0of 2013 and 2017

LST

Using the MOD11A1 data, the real LST of the study area was extracted. 200 random points are
created in the research area. After resampling the atmospheric correction and single window algo-
rithm inversion results, the temperature values of corresponding points are extracted. After the rel-
evant data processing and regression model establishment, the correlation coefficient and R? were
obtained. The specific results are shown in figure 7. In the two years, the atmospheric correction
method is better in 2017, and the single window algorithm is better in 2013. However, the temper-
ature of single window algorithm in 2017 is compressed in a narrow range, overall the atmospheric
correction method is better. The following analysis is based on the results of atmospheric correc-
tion.

The LST results after grading are shown in figure 8. According to the final LST distribution
map, combined with the ISC index classification results, the construction land in the downstream
and along the banks of the Dazhangxi Basin has a significant heat island effect in 2013-2017. It
can be concluded that LST and ISC results are significantly related to the degree of urbanization,
but may also be restricted by vegetation, water and other factors. For example, the greening and
environmental improvement in the central urban area may reduce its thermal environment effect to
a certain extent.
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(2013 (b)2017

Through comparative analysis, it can be found that the vegetation coverage in 2017 has an ob-
vious trend of reduction, especially in the northeast and west of the basin, the vegetation area de-
creased significantly. In the southeast of the basin, there are also some areas where the vegetation
coverage decreases. The main reason is that the operation of the power station needs some human
intervention, which leads to the destruction of the ecological environment.

LULC monitoring and change detection

The classification accuracy based on the automatic decision tree method was 94.14% in 2013
and 90.69% in 2017, and the kappa coefficient was 0.92 and 0.88, respectively. The images of
Dazhangxi watershed in 2013 and 2017 are classified, and the classification results are shown in
figure 10.
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Fig. 9. VFC in 2013 and 2017

The construction land is mainly distributed along the river and mainly distributed in the north-
east of Dazhangxi Basin, while the farmland is mainly distributed near the construction land. Com-
pared with the land use map of 2013 and 2017, it can be found that the changes of construction
land, farmland and unused land are more obvious. In 2017, the area of construction land increased,
the area of agricultural land decreased, and the area of unused land increased.

(2)2013 (b)2017 1
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Fig. 10. LULC in 2013 and 2017

The classification results were statistically analyzed and a pie chart was drawn (fig. 11). The
vegetation coverage rate of Dazhangxi basin is higher, reaching more than 60%. However, the veg-
etation coverage rate in 2017 was lower than that in 2013, the proportion of forest land and farm-
land decreased significantly, and the proportion of construction land and unused land increased
significantly. This shows that with the advancement of urbanization, the land use in the Dazhangxi
Basin has changed. The land use inclines to the construction land, and part of the farmland is used
for urban construction. To a certain extent, this has affected the vegetation coverage rate and eco-
logical environment of Dazhangxi Basin.
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Fig. 11. Proportion of land use types in 2013 and 2017
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In order to further reflect the land use change of Dazhangxi River Basin from 2013 to 2017, the
concept of land transfer matrix (Liu, Zhu, 2010) was introduced and calculated the detailed land
use type area transfer change from 2013 to 2017, as shown in table 4.

From the perspective of land transfer, the land with large transfer-out area was forest land,
grassland and farmland in order from 2013 to 2017, with the transfer-in area of 33952.59 ha,
210725.66 ha and 7175.61 ha respectively. The largest transfer-in area was forest land, grassland
and farmland, and the transfer area was 30559.86 ha, 11795.31 ha and 5665.23 ha respectively.
The overall situation of the transfer in and out shows a decreasing trend in forest land, and it is
mainly converted into grassland, and the construction land shows an increasing trend, and the main
source of increase is the conversion of farmland to construction land.

From the area ranking, the vast majority of land types in Dazhangxi basin are forest land, grass-
land and farmland. Forest land is an important indicator of the natural and ecological environment
in the region, which indicates that the ecological maintenance of Dazhangxi basin is relatively
good. However, compared with 2013, the proportion of forest land decreased in 2017, and it was
mainly transferred out to grassland, and the forest land and grassland were transformed from each
other, mainly due to the impact of human activities. The proportion of construction land is in-
creased, and it mainly comes from the conversion of farmland. Urban construction needs new ex-
pansion. But maintaining enough farmland area is also the key to ensure the economic and food
sources of urban residents. While promoting the construction of urbanization, the Dazhangxi river
basin should take into account the protection of ecological environment, so as to realize sustaina-
ble development.

Table 4
Land use change area transfer matrix from 2013 to 2017 (ha)
Land use Grassland Cnonstruc- Forest Farmland Water Unused Transfer-
tion land body land out
Grassland 4984.29 219.87 3612.24 1147.32 5.4 756.54 10725.66
Construc- 29.25 904.68 5.22 675.18 71.55 263.43 194931
tion land
Forest 5778.63 39.87 26871.39 287.01 4.59 971.1 33952.59
Farmland 994.32 1310.58 70.65 3424.68 37.98 1337.4 7175.61
Water body 243 17.73 0.09 28.44 745.2 18.99 812.88
U&‘I‘f;d 6.39 155.43 0.27 102.6 12.6 131.58 408.87
Transfer-in 11795.31 2648.16 30559.86 5665.23 877.32 3479.04 55024.92

NPP monitoring and analysis

The NPP grading distribution in 2013 and 2017 was finally as shown in figure 12. Through
comparative analysis, we can see that compared with 2013, the low biomass areas in 2017 in-
creased significantly. Taking the main trunk of Dazhangxi as the center, the areas around it are al-
most all low biomass areas, and they are shown in a more contiguous form. However, the NPP in-
version results in 2013 showed that there were a few high or sub high biomass areas in the form of
broken patches near the main trunk of Dazhangxi. The main reason for this phenomenon is that the
operation of the power station near the basin has destroyed the forest around it, thus affecting the
biomass of the area. Another obvious change is that the high biomass area in 2017 has a certain
reduction compared with 2013. Especially in the west, North and southeast of the basin, this situa-
tion is obvious.

The results of the changes of two years are detected as figure 13. On the whole, the NPP of the
study area showed a decreasing phenomenon, and the decreasing area was mainly forest land type,
which indicated that the forest land was affected in this process. There is a high spatial correlation
between the unchangeable region and the low biomass area. The low biomass area is mainly water
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land type. The biomass of water body is generally very low. It is impossible to develop into forest
land type with high NPP in a short time. The NPP corresponding to all water body types will re-
main unchanged. The rising areas are mainly distributed in forest, especially in the East and West
of the basin. In order to improve the ecological living conditions of local residents, some green
belts were planted by human intervention. The NPP in Western China will increase sporadically,
which is mainly due to the comprehensive utilization of Longxiang reservoir from power genera-
tion to water supply. This location has a certain ecological mitigation effect on this area.

Sb)20|7

Fig. 13. NPP transform detection distribution

The NPP results, LST and VFC values of two periods was extracted by creating 200 random
points in the study area. Statistical software was used to describe the spatial relationship among
them. The results are shown in the figure 14.

e

Fig. 14. Scatter map of 3D feature space (left 2013, right 2017)
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According to the above analysis, NPP has a high correlation with VFC. With the increase of
VFC, NPP increased except for a few sites. VFC, to a certain extent, represents the dense situation
of ground vegetation. When the vegetation is lush, it can make full use of solar radiation and pro-
duce more NPP. Analysis of a small number of special points shows that NPP is always low no
matter how the VFC changes, which may be caused by the model method. The calculation of the
absorption of incident photosynthetically active radiation (PAR) by vegetation layer is based on
different types of surface features. This study cannot guarantee that each type of ground feature
can be identified completely and correctly. The corresponding pixel of this point may have vegeta-
tion surface feature spectral information and has high VFC, but its corresponding NPP value is un-
derestimated because the ground feature type is not classified into vegetation.

In addition, there is no direct correlation between NPP and LST. In different temperature rang-
es, the corresponding NPP values are basically the same. In this study, we use the remote sensing
image obtained at a certain time, and the temperature retrieved from it is also instantaneous, which
will not have a direct impact on NPP. On the other hand, the study area is the Dazhangxi basin
with a small scope. Even though different types of surface features have an impact on surface tem-
perature, the overall impact is small, so the impact of temperature on net primary productivity is
not obvious in this region.

RSEI monitoring and assessment

As can be seen from the table 5, The first principal component (PC1) of the four indicators in
the study area has the following characteristics: 1) The contribution rate of PC1 is greater than
70%, indicating that it has concentrated most of the characteristics of the four indicators; 2) The
four indicators have a certain degree of contribution to PC1, and are relatively stable, not like in
other characteristic components (PC2 ~ PC4). 3) In PC1, NDVI and WET which represent the
greenness and humidity are positive, indicating that they contribute positively to the ecology. LST
and NDSI, which represent heat and dryness, are negative in PC1, indicating that they have nega-
tive effects on ecology, which is consistent with the actual situation. However, in PC2 ~ PC4,
these indicators are sometimes positive and sometimes negative, which is difficult to explain the
ecological phenomenon. Therefore, compared with other components, PC1 concentrates the char-
acteristics of each index to the greatest extent, and can reasonably explain the ecological phenome-
non, so it can be used to create comprehensive ecological index.

Table 5
Results of principal component analysis

Indices 2013 2017
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
dryness -0.955 0.023 -0.249 0.157 -0.903 0.222 -0.327 0.169
greenness 0.841 0.526 0.084 0.096 0.713 0.654 0.239 0.085
heat -0.891 0.024 0.452 0.040 -0.816 -0.171 0.547 0.071
humidity 0.875 -0.456 0.108 0.120 0.867 -0.468 -0.021 0.173

According to PC1, the comprehensive representativeness of RSEI can also be analyzed from its
correlation with each index. The stronger the correlation between RSEI and each index is , the
more comprehensively it can represent each index. Table 6 shows the correlation coefficient be-
tween each index and RSEI, as well as the correlation coefficient between each index itself. For a
single indicator, the highest average correlation between indices is NDSI, reaching 0.849 in 2013,
The two-year average is 0.792. However, the annual average correlation coefficient between RSEI
and these four indicators is greater than 0.61, and the two-year average is 0.725, which is 6.4%
higher than the average of the lowest NDVI. Obviously, the higher correlation between RSEI and
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each index indicates that it is more representative than any single index and can comprehensively
represent the information of each index.

Table 6
Correlation coefficient matrix of each index and RSEI index
Indices 2017 2013
! NDSI | NDVI | LST | WET | RSEI | NDSI | NDVI | LST | WET | RSEI
NDSI 1 20562 | 0.532 | -0.85 | -0.678 1 20.797 | 0.745 | -0.855 | -0.692
NDVI 0.562 1 20557 | 0322 | 0.819 | -0.797 1 20.694 | 0516 | 0.812
LST 0.532 | -0.557 1 20.627 | -0.701 | 0.745 | -0.694 1 20.737 | -0.667
WET 2085 | 0322 | -0.627 1 0.729 | -0.855 | 0516 | -0.737 1 0.698
Average 0.736 | 0.610 | 0.679 | 0.700 | 0.732 | 0.849 | 0.752 | 0.794 | 0.777 | 0.717
correlation
Two year NDSI=0.792 NDVI=0.681 LST=0.737 WET=0.738 RSEI=0.725
average

Note: the average correlation is calculated based on the absolute value of the correlation coefficient between itself
and other indicators. Take NDSI in 2017 as an example: average correlation NDSI = []-0.562] + |0.532]+|-
0.85]+|1]]/4=0.736.

RSEI can also be used to establish ecological models to simulate and predict the trend of re-
gional ecological change. Firstly, the thematic images of NDVI, WET, LST, NDSI and RSEI of
each year are sampled, and then the relationship model is established by stepwise regression anal-
ysis with RSEI as dependent variable and NDVI, WET, LST and NDSI as independent variables,
28000 sample points were collected from each image. Enough sample points and sampling method
throughout the whole image can ensure the representativeness and objectivity of regression analy-
sis results, and avoid the uncertainty caused by small sample and local sampling. In 2013, the
model is RSEI = 0.277Wet + 0.266NDVI- 0.302NDSI — 0.282LST+ 0.477 (R* = 0.992); while in
2017, it is RSEI = 0.313Wet + 0.258NDVI- 0.326NDSI — 0.295LST+ 0.483 (R*= 0.989). From
the regression coefficient of each index, the coefficients of NDVI and WET are positive, indicat-
ing that they have positive effect on RSEI, while LST and NDSI are negative. Further study on the
change of regression coefficient shows that the comprehensive influence of NDVI and WET on
RSEI is more than that of NDSI and LST, because the sum of the two coefficients is greater than
the absolute sum of NDSI and LST.

The RSEI grading results was shown in the figure 15. Compared with 2013, the low biomass
areas in 2017 increased significantly. Taking the main trunk of Dazhangxi as the center, the areas
around it are almost all low biomass areas, and they are shown in a more contiguous form. How-
ever, the NPP inversion results in 2013 showed that there were a few high or sub high biomass
areas in the form of broken patches near the main trunk of Dazhangxi. The main reason for this
phenomenon is that the operation of the power station near the basin has destroyed the forest
around it, thus affecting the biomass of the area. Another obvious change is that the high biomass
area in 2017 has a certain reduction compared with 2013. Especially in the west, North and south-
east of the basin, this situation is obvious.

Figure 16 shows the results of changes between the two periods. Overall, the NPP of the study
area showed a decrease, and the decrease area was mainly forest land type, which indicated that
forest land was affected in this process. There is a high spatial correlation between the unchangea-
ble region and the low biomass area. The low biomass area is mainly water body. The biomass of
water body is generally very low. It is impossible to develop into forest with high NPP in a short
time. The NPP corresponding to all water body types will remain unchanged. The rising areas are
mainly distributed in forest, especially in the East and West of the basin. In order to improve the
ecological living conditions of local residents, some green belts were planted by human interven-
tion. The NPP in Western also increased sporadically, which is mainly due to the comprehensive
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utilization of Longxiang reservoir from power generation to water supply. The development orien-
tation has a certain ecological mitigation effect on the region.
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Fig. 16. RSEI transform detection distribution

The relationship between each index and the RSEI is investigated from the distribution of their
scatter points in the 3-D characteristic space (fig. 17). The top of the scattered point group is the
gathering area with good ecological conditions, mainly the high coverage vegetation area; the bot-
tom end of the scattered point group is the gathering area with poor ecological conditions, repre-
senting the bare soil area. Generally speaking, both regression model and PCA show that the
greenness represented by NDVI and the dryness represented by NDSI have the greatest impact on
the ecological environment, and the impact of NDVI is greater than that of NDSI. The results of
this data simulation also prove that the effect of controlling soil and water loss by increasing
greenness in this area is greater. If the 2017 model is used for prediction, the NDVI will be in-
creased by 0.253 for every 0.1 increase of RSEIL

Comprehensive evaluation of ecological environment

From the perspective of thermal environment, due to the rapid expansion of urban construction
land along the banks of Dazhangxi, the intersection of tributaries and Minjiang River downstream,
the thermal environment effect has been increasing, forming the local heat island effect. This has
quite negative effect on ecological environment

As for land use change, the vegetation coverage rate of the study area is higher as a whole,
reaching more than 60%. In 2017, compared with 2013, forest land and farmland declined obvi-
ously, while construction land and unused land have a large increase. This shows that with the ad-
vancement of urbanization, the land use in the Dazhangxi River Basin has changed significantly.
The land use inclines to the construction land, and some forest land and farmland have changed
into urban construction land. This phenomenon also damaged ecological environment to some ex-
tent.
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Fig. 17. Relationship between RSEI and variables

The NPP of the study area decreased in 2017, and the decreasing area was mainly forest land
type. There is a high spatial correlation between the unchangeable area and the low biomass area,
which is mainly caused by the water body in the low biomass area. The increasing areas are scat-
tered in forest, especially in the East and West of the basin. This is mainly caused by the improve-
ment of human intervention and the comprehensive utilization of Longxiang reservoir from power
generation to water supply, taking into account power generation and other comprehensive utiliza-
tion.

From the analysis of RSEI, compared with 2013, the area of excellent ecological area decreased
significantly, the area of medium ecological area increased, and the area of poor ecological area
decreased. This shows that in the process of these years, the areas with good ecological environ-
ment have been damaged to a certain extent, and the areas with serious ecological environment
have been improved to a certain extent, making the ecological situation in 2017 mostly in the mid-
dle level.

Combined with the above analysis, from 2013 to 2017, the ecological environment of Dazhang-
xi Basin showed a slight deterioration trend, but due to human intervention, it has been improved
to a certain extent in the later stage. Ecological environment plays an important role in people's
quality of life. While planning urban construction, the local government should pay attention to the
local conditions. At the same time, it should pay attention to the problems of urban expansion and
forest land protection, avoid excessive concentration of heat island effect, so as to ensure the nor-
mal and balanced development of the region. In addition, the Dazhangxi basin is responsible for
water supply, power generation, shipping and other important social functions in Fuzhou. There-
fore, it is necessary to focus on measures such as increasing awareness of environmental protec-
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tion, paying attention to ecological balance and reducing pollution emissions for urban construc-
tion land along the Bank of Dazhangxi. For the unreasonable and inefficient power station, we
should make a comprehensive plan and change its main functions, so as to improve the ecological
environment of the region and inject inexhaustible power into the sustainable development of the
ecological environment in this area.

Conclusion and Recommendation

Through the combination of multi-source remote sensing data and a large number of field
measured data, this work comprehensively evaluates the ecological environment of the study area
from four aspects: thermal environment, LULC, NPP and RSEI which provides certain reference
and auxiliary decision-making basis for relevant government departments in planning and govern-
ance.

From four aspects, the ecological environment of Dazhangxi River Basin has been damaged in
2013-2017, but it has been improved in the later stage due to human intervention. Therefore, com-
pared with 2013, the excellent ecological area and poor ecological area in 2017 have decreased,
while the ecological area in the middle level has increased to a certain extent. In the reduced area,
the land use mainly comes from forest land, and the ecological environment around the power sta-
tion has been compensated and improved According to the current ecological environment of the
study area, the following suggestions are put forward: 1) When planning urban construction, the
government should pay attention to local conditions and speed up appropriately, avoid excessive
concentration of heat island effect, and ensure the balance of regional development trend. 2) The
unreasonable and inefficient power stations in the basin should be comprehensively planned to
change their main functions and improve the ecological environment.

Although this paper quantitatively evaluated the ecological environment of the study area from
many aspects, there are still many factors that affect the ecological environment do not consider,
such as soil terrain factors, biological resources, etc. (Chang et al., 2019). The evaluation of this
study is to evaluate the ecological environment from every single aspect, but not form a compre-
hensive index. The future research can combine the local characteristics, comprehensively consid-
er the factors affecting the ecological environment, and create an integrated framework, so as to
make a more comprehensive and accurate evaluation of the study area. Because of its special func-
tion orientation of power supply and transportation, the ecological environment of Dazhangxi ba-
sin is inevitably disturbed by human beings. In the future, human factors can also be quantified as
an indicator to evaluate the ecological environment more accurately.
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ry and Ecology (SUFOGIS)” (598838-EPP-1-2018-EL-EPPKA2-CBHE-JP), “Innovation on Remote
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AHAJIMTUYECKHM OB30P IYBJIUKAIIUN B OBJIACTA TPUMEHEHMUS /133 U
I'nC 1Jis1 OHEHKHW JMHAMMUWKHU PACTUTEJIBHOT'O IIOKPOBA

D.A. Kyp6anos, C.A. Jlexunn, O.H. Bopo6sés, C.A. Menbmukos, JI.M. lepryHos,
W. Ban, JI.B. Tapacosa, JI.H. CmMupHoBa
I10BOJKCKUH TOCYIapCTBEHHBIN TEXHOJIOTUYECKUI YHUBEPCUTET

B Onuocativue 200vl npocHo3upyemcst ycuneHue poiu 2eonpocmpancmeeHHblx 0anuvlx u /]33 6 peuienuu
60NPOCO8 MOHUMOPUH2A OKPYICcaioufell cpedvl, OYeHKe PACMUMenbHo20 (JIeCH020) NOKposa u npedomepa-
wenus skonocudeckux beocmeuti. Ionumanue menoeHyul pazeumusi SMuUx HANPAGIEHULL 8 YCILOBUSIX MEHS-
10We20Cs KIUMAama no360aum Co8epuleHCmao8ams no0Xoovl K YCMOUYUBOMY YNPAGIEHUIO tecamu. Aemo-
PaAMU NPOBEOEH AHATUMUYECKULI 0030p HAYYHBIX cmamel, NoceaueHHblx ucnoavsosanuio /{33 u I'UC ons
OYEHKU UBMEHEHULL HA3EMHO20 NOKPOBA HA MENCOYHAPOOHOM Ypo6He 6 nepuoo mexcdy 2000 u 2020 ee. Pac-
CMOMpenHble UCCTe008aHUsT ObIIU CCPYRNUPOBAHBL NO NAMU HANpasneHusm: 1) npobrema usmeHneHus Kiu-
MAma u HApyWeHHOCMU JIeCHbIX dKOCUCEM, 2) MOHUMOPUHS U OYEeHKA (pasMenmuposaHHOCmMu pacmu-
menbHo20 (lecHo2o) nokposa, 3) ypbanuzayus u 2opoockue neca (3eaénas ungpacmpyxmypa); 4) oyenxa
2N0OANILHBIX U PESUOHANLHBIX 3ANACO8 Yenepood, 5) OYeHKA GIUSHUSL HA USMEHEHUs. HA3eMHO20 NOKPO8a
KOMAIeKca pasiuyHulx axkmopos. Buvisereno, umo OucmanyuoHHvlil MOHUMOPUHE DPACHIUNETbHO20
(necHo20) NOKpoBa 8 Mupe nPOBOOUNCsL 8 PAMKAX MENCOYHAPOOHBIX NPOSPAMM 60 MHO2UX cmpaHax. B no-
clledHue 200bl makue UCCIe008aHUsL UUPOKO NPAKMUKYIOMCS 8 ObICMPO PA36USAIOWUXCL CMPAHAX 1020~
60CMOUHOU A3uu, UMEIWUX C80I0 CReYUDUKY YAPABTIEeHUS NPUPOOHBIMU PeCypCaMU, COOMBEMCmMEYouue
aKONI02UYeCKUe NPOOIeMbl U B03MONCHOCIU 8ATUOAYUY MEMAMUYECKUX KAPmM HA3eMHbIMU OaHHbIMU. Pe-
3YILIMAMBL UCCTEO0BAHUL MAKIHCE NOKAZLIGAIOM YCIMOUYUBIIL POCH MOYHOCIU U OemalbHOCMU pa3pada-
MbIBAEMBIX MEMAMUYECKUX KAPM HA OCHOBe NOBbIUEHUSI NPOCMPAHCMEEHHO20 PA3PEeUleHUsl CRYHHUKOBbIX
uzoopaxcenuit u I'UC mexunonozuti. 3mo 6 coio ouepeds ygeaudugaem moyHoCms NPOSHO308 U Mooeell
OUHAMUKY PACIMUMENbHOO (TEeCHO20) NOKPOBA C Y4EMOM B030€UCmEUsl HA He20 KOMNAEKCAd NPUPOOHBIX U
AHMPONO2eHHbIX Paxmopos. B 3axniouenue noOUEPKUBAEMCsl BAINCHOCTD COBEPULEHCIMBOBANUSL U OATbHELI-
wezo ucnonvzoganus danuvix /[33 u I'UC 015 pewenust 2no0AIbHBIX U PESUOHATLHBIX 3a0ad 6 0OIACHU MO-
HUMOPUH2A PACMUMETbHO20 (TIECHO20) NOKPOEA.

Knrouesvie cnosa: I'YIC, /]33, cnymuukosvie usobpascenus, nec, LUCC, usmenenue xmumama, poc-
cutickue u 3apybedicHvie UCcie008aHus.

APPLICATIONS OF REMOTE SENSING AND GIS FOR ESTIMATION OF LAND USE /
COVER CHANGE: A REVIEW

E.A. Kurbanov, S.A. Lezhnin, O.N. Vorobev, S.A. Menshikov, D.M. Dergunov,
Y. Wang, L.V. Tarasova, L.N. Smirnova
Volga State University of Technology

In the coming years, it is expected that the role of geospatial data and remote sensing will increase in
resolving problems of monitoring of environment, estimation of the vegetation (forest) cover and preventing
ecological disasters. Understanding the development trends of these areas in the conditions of climate
change will increase approaches to sustainable forest management. The study provides an analytical re-
view of research articles related to the use of remote sensing and GIS in the field of Land Use / Cover
Change (LUCC) worldwide between 2000 and 2020. The research overview was grouped in five areas: 1)
the problem of climate change and disturbance of forest ecosystems, 2) monitoring and assessment of frag-
mentation of vegetation (forest) cover; 3) urbanization and urban forests (green infrastructure), 4) estima-
tion of global and regional carbon stocks; 5) assessment of the impact of various factors on the LUCC. The
review reveals that remote sensing of vegetation (forest) cover in the world is carried out in many countries
of the world within the framework of international programs. In recent years, such studies have been widely
practiced in the rapidly developing countries of Southeast Asia, having their own specifics of nature man-
agement, environmental problems and the possibility of validating thematic maps with ground data. The
overview also shows a stable increase in the accuracy and detail of the developed thematic maps based on
the increased spatial resolution of satellite images and the use of GIS technologies. This, in turn, leads to
the accuracy of predictions and models of the vegetation (forest) cover dynamics, taking into account the
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impact of a complex of natural and anthropogenic factors. In conclusion, the importance of improving and
further use of remote sensing and GIS data for solving global and regional problems in the field of monitor-
ing of vegetation (forest) cover is emphasized.

Key words: GIS, remote sensing, satellite images, forest, LUCC, climate change.

BBenenue

HccnenoBanue npoGiieM W3MEHEHHs 3eMJIETI0Ib30BaHus U HazeMHoro mokposa (LUCC — awen.
Land Use / Cover Change), koTopoe Hen30€XKHO IPOUCXOJUT B CBSI3U C MPUPOTHBIMU SIBICHUSIMHU
U XO3S1CTBEHHOH JEATEIbHOCTBIO YEIOBEKa, B MOCICIHUE JACCATHIICTHS POBOAUTCS YUEHBIMHU BO
BcéM Mupe . [Ipoext LUCC Obu1 3anymieH B 1994 rony B paMkax MeXAyHapOAHOW MPOrpaMMbl
reoctepsi-onoctheps! (IGBP — anen. International Geosphere-Biosphere Programme), mocBsimién-
HOW (heHOMEHY TJIOOATbHBIX HM3MEHEHHH BO B3aUMOCHCTBUU C YEJIOBEYECKHMMH CHCTEMaMH
(IGBP). Ilocne 3aBepuienust nporpammbl IGBP B 2015 r. uccnenoBanust B oonactu LUCC mpo-
nomxunuck B 2016 roxgy B pamkax mporpammsel «I'nmobanpHas 3emensHasi mporpamManllocne 3a-
Bepienus nporpamMmel IGBP B 2015 roay uccnenosanust B o6nactu LUCC npogomxuiuck B 2016
roay B pamkax nporpammsl «l nobanbHas 3emensHas nporpammay (GLP — anen. Global Land Pro-
gramme) (Global land...). Cuuraercs, uto LUCC oka3piBaeT 3HaYUTENbHOE BIUSHUE HA Pa3JIny-
HBIE KOJIOTUYECKHE, YKOHOMHUYECKHE M COLMAIIbHBIC Mpolecchl B MupoBoM Maciirabe (Chen et
al., 2020; Lai et al., 2016). DTu iporiecchl MPUBOAAT K BEIPYOKE JIECHBIX HACAKICHUH, IeTpalaliiu
PacTUTENILHOTO MIOKPOBA, CTUXUIHBIM O€ACTBUSAM, yTpaTe OMOpa3sHOOOpasHsl, MOTepe YHUKAIBHBIX
9KOCUCTEM W HapYIICHHIO TI00anbHOTrO Oananca armocdeproro yriepoaa (Pan et al., 2011; Co-
hen et al., 2016; Knott et al., 2019).

B poccuiickoii Hay4HOH JUTEepaType MpH OLIEHKAaX PaCTUTEIHHOrO MOKPOBA M JUHAMHKH JaH/I-
mapToB OOBIYHO HCIONB3YIOT TaKUE MOHATHS, KaK «HA3E€MHBIM MOKPOBY», «IIOACTHUIAIONIAS TO-
BEPXHOCTBY», <«JIaHAmA(THBIM mokpoB» W T.n. (YepHsix u np., 2018). [JIns noHumMaHus
(MpOrHO3MPOBaHUS) TEHJIECHIMNA U NpUHATUA pemeHuit no ynpasiaennto LUCC tpeGyrores Kpyn-
HOMAacIITaOHbIe MEePHOANUYECKUE HAOIIONEHUS 32 SKOHOMUUECKOM 1€ TeIbHOCThIO YeJIOBEeKa U CO-
CTOSIHUEM pacCTUTEIbHOTO MOKPOBa Ha PErMOHAJIbHOM U IiiobanbHOM ypoBHsX (Yang, Lo, 2002;
bapranes u gap., 2005; Li, Qu, 2018). TpamuuuoHHble METOABI cOOpa JaHHBIX
(xaprorpadupoBaHie W Ha3zeMHas ChEMKA) IS TOJOOHBIX 33a1ad SBISIFOTCS TPYA03aTPaTHBIMH,
3aHUMAIOT MHOTO BPEMEHH U TPEOYIOT 3HAUYUTENbHBIX CpeAcTB. [loaToMy IuIsi aHamM3a reorpo-
CTpaHCTBEHHBIX JaHHbIX B 001acTu LUCC HaxoaT HIMpOKOe MPUMEHEHUE N300pakeHUsl TUCTaH-
monHoro 3ouaupoBanus 3emnu ([133) u Texnonoruu 'MC (reoundopmannoHHbIe CUCTEMBI), KO-
TOpBIE 00ECIeUNBAIOT aKTyalbHOE, CBOEBPEMEHHOE U PEAIMCTUYHOE MPEACTaBICHNE Ha3eMHOTO
nokposa (JIynsH u ap., 2011; Kyp6anos u np., 2014; Moulds et al., 2018). 3Tu TexHomoruu Ha
CETOJHSAIIHUHN JIeHb ABISAIOTCS Haubonee 3(pPEeKTUBHBIMU UHCTPYMEHTaMU HaOIIOEHUS 3a U3Me-
HEHMSIMM HAa3€MHOT'O MOKpoBa Oiarojapss BO3MOXHOCTH OBICTPOTO M ONEPATHBHOIO IMOIYYEHHS
n300paKeHU! B MIMPOKOM JAMarna3oHe 3jaeKkTpoMarHuTHoro crnekrpa (Encaxos, 2012; Taubert et
al., 2018; Im, 2020).

UccnenoBanus u pazpadotku B oomactu LUCC ¢ npumenenunem ganabix J[33 u I'C BeimomHs-
IOTCSl BO BCEM MHUpE 10 pa3IMYHBIM TEMATHYCCKHM HANpaBJICHUSM. 3HAUYNATEIBHAS YacTh TaKUX
paboT MPHUXOUTCS HAa OIICHKY M MOHHTOPUHT PACTHUTEIHHOTO (JIECHOTO) TIOKPOBA.

Heasto padoTsl siBisieTcs 0030p HayuHbIX HccnenoBanuii LUCC B 00s1acTH OLIEHKH pacTH-
TenbHOro mnokpoa ¢ nomouipto /[33 u I'MC TexHoOmOrMii U BBIABIEHUE OCHOBHBIX HAay4HO-
MIPaKTUYECKUX HAIIPABJICHUN UX IMPUMEHEHUS IIPY MOHUTOPHUHIE JIECOB HA PErMOHAIBHOM U HallU-
OHAJILHOM YPOBHSIX.
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MarepuaJjbl 1 METOAMKA MCCJIe0BAHUM

B pabore ananmu3upoBaMCh 3apyOeHBbIC U OTCUSCTBCHHBIC HAyYHBIC MyOJIMKAIMU TIO0 TEMeE
uccnenoanus 3a nepuox ¢ 2000 nmo 2020 rox. [ng noucka JIUTEpaTypHbIX UCTOYHMKOB Ha aH-
TJIMICKOM SI3bIKE ObLIa MCIOJIb30BaHA MEXIYHApPOHAs HAyKOMETpHuecKas 0aza JaHHBIX Scopus.
[TyOnukanuu Ha pycCKOM sI3bIKE 110 TeMaTHKE UCCIIeI0BaHUS ObLIM HailIeHbl B POCCUNCKON Hayy-
HOH 3JeKTpoHHOU Ombmmoteke elibrary.ru. Jlinst moaOopky myOMKaIMi MCIOJb30BaHbI CIICIYIO-
e kiroueBsie cioBa: LUCC, forest (sec), GIS (I'MC) u remote sensing (qucTaHIIMOHHOE 30H M-
poBanue). JIuteparypHble HCTOYHHKH, pACCMaTPUBAaEMbIE B 3TOM HCCIIEOBAHUH, BKIIIOUAIH OTy0-
JMKOBAHHBIEC CTAThU, MaTEPUANIbl KOH(EPEHIIUH U TTIaBbl KHUT.

[TepBonayansHO B 6a3ze maHHBIX Scopus Obw10 HaiineHo 1127, a B poccuiickom cermente 348
nyOJIMKanui, UMEIOIINX OTHOILICHHE K paccMaTpuBaeMoil mpobieme. CTaTtbu, B Ha3BaHUHU, KITFOUe-
BBIX CJIOBAaX W aHHOTALlMM KOTOPBIX HE OBUIO YCIIOBHH MOWCKA, B AaJbHEWUIIEM ObUM YAaJeHBI U3
cnucka. [locne yrouHeHus: nogo0paHHbIX cTaTel, BKIIOUEHHBIX B aHAIMTUYECKUI 0030p U 3aTpa-
ruBatonux HenocpeactBeHHo Temy LUCC u pacTuTenbHOro (JIeCHOr0) MOKPOBa, /Ui aHaan3a Obl-
70 octaBieHo 209 mybnukanuii, U3 KOTOPIX 32 ObLIK BBISBICHBI B POCCUICKON 0a3e maHHBIX eli-
brary. CcbUIKM Ha UCIIOJIb3yeMble HCTOUHUKH BKIIOYal0T 106 myOnukanmii .

Pe3syabTaTsl

AHanu3 JIUTEepaTypHbIX UCTOUYHUKOB 10 Teme ucnonb3oBanusd ['MC u [I33 nusa ouenku LUCC
MIO3BOJIMJI CUCTEMATU3UPOBATh CYLIECTBYIOIIME PabOThl B HECKOJBKO TEMaTHMYECKHUX HalpaBliie-
HUM, KOTOpBIE 3a NOCIEAHNUE JABa JECATHIIETUS ObUIN aKTyaJbHBI JJI1 OTEYECTBEHHBIX U 3apyOek-
HBIX UCCIIEZIOBATEICH.

UccnenoBanue mokasanio, 4To 3HaYuTENbHAs 4yacTh padot B obmactu LUCC cBsizana ¢ npooane-
MOIl UBMEHEHUA KIUMAma u HapyuwieHHocmu JecHvlx Ikocucmem. OO00IEHNE TTOCIETHUX T10-
JYYeHHBIX pPE3yJbTaTOB B 3TOH 00JacTH CHOCOOCTBYET pPa3BUTHIO KOHIEMIUN YCTOHYMBOTO
yIpaBJIeHUs JecaMu U ycroifumBoro passutus (Cao et al., 2020). XapakTepucTUKa B3aUMOJIEH-
cTBUM nanamadTa (pacTUTENBHOTO MOKPOBA) M M3MEHEHMs KiIMMaTra (Hampumep, BIUSHHUA Ha
MECTHBIE U PETUOHAIBHBIE KIMMATUYECKUE TPOLECCHI, TOAXO0Abl K CMITYEHHUIO MOCIEACTBUN W3-
MEHEHHUs KJUMaTa U aJlalTallii) cTajla OJHOW M3 IJIaBHBIX 3aj1a4 JaHamadtHoi sxomorun (Wu,
2013).

BnusiHue cHuKeHMs IUIOLIAAEH JIECOB Ha TeMIlepaTypy aTMoc(epbl B 3HAUMTEIbHON CTENEeHU
3aBHCHUT OT reorpaduueckoi mupoTsl Janamagdra (MecTHocTH). B yacTHOCTH, OBIIIO YyCTaHOBIIEHO,
YTO BBIPYOKa JIECOB BBI3bIBAET MOXOJIOIaHUE B BBICOKUX HIMPOTAX M3-3a YBEJIUUYEHUS anbOeno mo-
BEPXHOCTH, B TO BPEMS KaK IPOTHO3UPYEMOE MOTEIUIEHUE B PE3YJIbTATE CHUIKEHUS CYyMMAapHOTO
ucrnapeHus 0yaer HabIoAaThCs B pernoHax HU3kuX mupoT (Bonan, 2008; Tolle et al., 2017). Cae-
JICHHE JIECOB B CPEAHMX LIMpOTax EBpOMbI He MOBIUSIO HA JIETHIOI TeMIIEpaTypy aTMoc(epsl, B
TO BpeMs Kak 3HMMHAA TeMmmeparypa cHu3mwiack Ha 1,5 °C (Broucke et al., 2015). Ieo-
npoctpanctBenHble nanubie LUCC mpoBunnuu XoinyHiasH (KHP) 3a 1900-2010 rr. mokazanu,
YTO CYILIECTBYET 3HAUNTENbHASI KOPPEISALUS MEXI1y ePEeBOJAOM JIECHBIX HACAXKACHUM, 00111as 110~
1a/ib KOTOPBIX CHU3MJIACh 3a Hcciaenyemblid nepuosa Ha 28 %, moJ1 CeNbCKOX03sIIICTBEHHbBIE YTOIbs,
U HMHJEKCAMHU SKCTpEeMalbHBIX Temmeparyp atmocdepsl (Zhang et al., 2017). [lonoxurensHbie
KOPPEJSIUH TaKKe HaOJIF0Ial0TCA MEX1y YMEHbIIEHUEM ILTOMIA M JIECOB 3TOM MPOBUHIINH, OoJiee
Y4acThIM BO3HUKHOBEHHEM SKCTPEMaJIbHO BBICOKMX TEMIEPATyp U MOBBIIIEHHEM MaKCHUMAaJbHOTO
3HAa4YeHHUs JHEBHOW MUHUMAJIbHON TeMIepaTyphl.

Pesynpratel ananuza LUCC B noiime nonunsl Kunombepo (Tanzanun) 3a nepuon 1990-2016
IT. 0 cHUMKaM Landsat ¥ ¢ UCTONb30BaHMEM MPUHATHIX TNIOOATBHBIX KO3(PPUIIMECHTOB CTOMMO-
CTH U MOJU(HUIMPOBAHHBIX JIOKATBHBIX KOI((PUIIMEHTOB CTOMMOCTH SKOCUCTeMHBIX ycuyr (ESV -
ecosystem services values) mokasanu CHWXKEHHE Mokaszateneil ESV necoB, KycTapHUKOB, BOJHO-
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0o0THBIX yroauii u Boasl (Msofe et al., 2020). DTo nmpueno k obmei motepe 811,5 muH moa-
poB CIIA (26,6 %) B ESV 3a nocneanue 26 et npu pacyérax ¢ MOAU(UIIUPOBAHHBIM KO3 Pu-
LUEHTOM JIoKanbHOTO 3HaueHus u a0 3000,7 mun gomtapoB CILIA (42,3 %) npu pacuére c uc-
MOJIb30BaHUEM TJI00ATBHBIX KOA(DPHUITUESHTOB.

Jlis o1leHKH MaHTpOBBIX JiecoB 10 cTpaH 10ro-BOCTOYHON A3WH, KOTOpPBIE YSI3BUMBI K IpoILIec-
cam LUCC, 0bu1 mpoBeA€H KOPPEISIUOHHBIN aHam3 Mexay naHHbiMu MODIS u nuHamukon
mwiomaneii stux 3kocucteM 3a 2000-2012 rr. MccaenoBanue mokasano, 4ro 22,64 % oO1iel BbI-
pyOJIEHHOH TUIONIA/I MAaHTPOBBIX JIECOB OBLJIO MPEOOPA30BAHO IO CEIBCKOE X034iCTBO, 5,85 % —
oJ akBakyibTypy, 0,69 % — mon undpacTpykrypy, a 16,35% ocrtanocs moa BIUSHUEM JIPYTHX
chep nestenpHOCTH yenoBeka (Fauzi et al., 2019).

HccnenoBaHne CyKIIECCHOHHOM JWHAMHMKH OOpeallbHBIX JIECOB, PEKUMOB HapYIICHUH
(moxapbl) U UX peakIy Ha U3MEHEHHE KJIMMara IPOBEJAEHO Ha mpumepe OacceiiHa pexu HOxon
(CILIA u Kanana). ABTopamu Obuia cMozenupoBana Hacrosas (3a 2000-2008 rr.) u nporao3upy-
emas npoaykTuBHOCTh (NDVI) B HeHapyIIEHHBIX HACAXKIEHUSX HAa OCHOBE PA3IUYHBIX HCTOYHU-
KOB a0MOTUYECKUX JAHHBIX, & TAKXKE CO3JaHbI MOJICIH CIUIAHHOBOW PErPECCHH M MEHSIIOIIETOCS
KJIMMaTa. Pe3ynbTaTsl oKa3anu, 4TO MaKCUMallbHas aHOMaJHs SKOCHUCTEMbI HacTymnaeT yepes 30-
40 net moclie moxapa, a JMCTBEHHBIE JIPEBOCTOM OOBIYHO MMEIOT Oosiee BBICOKMN 3TOT IMOKa3a-
TeNb, ueM XBokHbIe (Wylie et al., 2014).

CuuTtaercs, 4To U3MEHEHHE KJIUMaTa BIUSET Ha NMPOJYKTUBHOCTh U PAaCHpPOCTPAHEHHUE JIECHBIX
nacaxaenuit (Beck, Goetz, 2012). Tem He MeHee, cTeneHb U CKOPOCTh 3TOTO BO3JCHCTBUS Ha 00-
HIYIO JIOJITOCPOYHYIO MPOTYKTHUBHOCTD OOpEaIbHBIX JIECOB OCTAIOTCS HeomnpenenéHHbIMU. [Iporao-
3UPYETCsl, YTO JUCTBEHHBIE MOPOJIbI OOpeaIbHOTO TMosica OoJiee MO3UTUBHO OYyAyT pearnpoBaTh Ha
n3MmeHnenue knumata (Johnstone et al., 2010), yem 6opeanbHbIe XBOIHBIE TOPOJIBI, U, BEPOSITHO, X
apeaJl CTaHET pacHpocTpaHaTbcs B Oosiee TersioM HampasieHun (Wolken et al., 2011; Um u np.,
2020; 3yeB u ap., 2019). B To xe Bpems oTMeHaeTcs, YTO YpOBEHb BO3AECHCTBHS KIMMATHYECKUX
M3MEHEHMH Ha PAaCTUTEIbHBIN MOKPOB TyHAp 3amaaHoil CuOHpH yKe SBISETCS KPUTHUECKUM
(TutkoBa, Bunorpanosa, 2015). B necocrennoit 3one llenTpansnoro YepHozembst Poccun nons
HapyLIEHHbIX XBOMHBIX JiecoB BhIpocaa ¢ 1985 mo 2018 rr. B 9 pa3, a B IUCTBEHHBIX Jiecax JOJs
HapyILIEHHbIX YYaCTKOB yBeJINYMIach He3HauuTenbHo (Tepexun, 2020).

Henocpencrsennoe otHomenue k npoueccam LUCC umerot paboTsl no MOHUmMOpuHZy u oyen-
Ke ¢ppacmenmuposannocmu pacmumenbHo2o (1ecnoz2o) nokposa. OparmeHTanus u Aerpajanus
necoB, Bei3BaHHbIe LUCC, MOTYT UMETh HEraTUBHBIC BIMSIHUS HA KOJOTHYECKHE CUCTEMBI B TIPO-
CTpaHCTBEeHHBIX MacmiTabax (Sharma, Roy, 2007; Riutta et al., 2014). I'pynnoii y4éHbsix ObuH
UACHTUGUIMPOBAHBI TPUMEPHO 130 MUIITMOHOB ()ParMEeHTOB JIECHBIX HACAKACHUHN B TPEX TPOIIU-
4yecKux u cyoTponuueckux pernonax (LlentpanbHas Amepuka, Adpuka, A3us u ABcTpaius), Ko-
Topble 00aany NPUOIU3UTEIBHO CXOXKUMHU pa3MepaMH, epuMeTpaMu U (pakTaTbHON CTPYKTY-
poii (Taubert et al., 2018) (puc. 1). [IporHo3HbIe MOJENM AAaHHOTO HCCIIEIOBAaHUS MOKA3bIBAIOT,
yTo B TeueHue 50 JIeT IOMOJIHUTENbHAS MOTeps Jieca MPUBEAET K 3HAYUTEIHOMY YBEITUYECHUIO
o011ero KoianyecTBa (pparMeHTHPOBAHHBIX YYaCTKOB JIeca, a TAK)Ke K YMEHBIICHHIO UX pPa3MEpOB,
U YTO 3TH TOCJIEICTBUS MOT'YT ObITh YACTUYHO CMATYEHBI 32 CYET JIECOBO30OHOBIICHHS U OXPAaHbI
JIECOB.

WNupniickumu y9€HBIMA ObLITA TIOJTYYEHA JUHAMUKA JIOJITOCPOYHBIX U3MEHEHUH JIECHOTO TIOKPO-
Ba U €ro NMPOCTPAaHCTBEHHO-BPEMEHHOM CTPYKTYphI Ha OCHOBE aHaiIM3a Habopa Tonorpaduyeckux
kapt (1930-e rr.) u HaOOpPOB CITyTHUKOBBIX M300pakenuit Landsat MSS (1975 u 1985 rr.), IRS 1B
LISS-I (1995 1.), IRS P6 AWIFS (2005 r.) u Resourcesat-2. MccnemnoBanue mokasanio, 4To 3a pac-
CMaTpHUBAaEMBbIi MEPHO B TOPHBIX BOCTOUHBIX ["atax MHaun HaOmMI01aeTCs CYIIECTBEHHOE CHIKE-
HUe TTomaau 6onbiux yuacTkos Jieca (Reddy et al., 2016). Obmiee KOITMUECTBO YU4aCTKOB Jieca B
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Puc. 1. Pacnipenesienue (pparMeHTOB TPONNYECKUX M CYOTPONUYECKHUX J1€COB B KOHTHHEHTAJIbHOM MAaCIITA-
0e mo muomaau: a) 1iast Cesepuoii u FOxnoii Amepuku (n = 55,5 man ¢pparmenToB); 6) Adpuxu (n = 44,8 mian
¢parmenTtos); ¢) A3uu u Ascrpaauu (n = 30,5 min ¢gparmenton). CIVIOIIHBIMH JMHUSIMH NIOKA3AHbI ANNPOK-
CUMMAalluM CTCIIECHHBIX pacnpez[e.ne}mﬁ ¢ nokasarejeM 1. Ha KapTax nNpuBe/J1€eHa BCSA TEPPUTOPUSA TPOIIUIECKOTI'O

nosica, a BEIOPaHHbIE TPONMYECKHE PerHOHbI 0TMeueHbI 3e1éHbIM 1BeToM (Taubert et al., 2018).

3TOM peruone yBennuuinoch ¢ 2688 (1930 r.) o 13009 (2013 r.). Camblit 00NBIIONH YIaCTOK Jieca
B 1930 roxy umen mromans 41669 km?, kotopas k 2013 roxy cokparmiack 10 27800 km”. Cormac-
HO TIPOCTPAHCTBEHHOMY aHAIIM3y, HApPSAIy C BBIPYOKOH JIECOB CBOHM BKJIaJ B (parMeHTHPOBAH-
HOCTb JIECOB BHOCSIT CENTbCKOE XO034KCTBO, Ierpafalys KyCTaApHUKOB U (DPYKTOBBIE MIIAHTAIUH.

[Tono6HbIe ke pe3yabTaThl HOMYUYEHBI I TUMaIaiCcKuX JiecoB MHNUU, KOTOpble ObUIH MOIBEp-
KEHBI aHTPOTIOTEHHOMN JEATEIHHOCTH B CBSI3U C SKOHOMHuUeckuM pazButueMm (Lele et al., 2008;
Chakraborty et al., 2017; Sahana et al., 2018). HccnenoBarenu npu oneHke pparmeHTannu oObIy-
HO UCIIOJB3YIOT CTaTUCTUYECKUE MOJENH, OMUCHIBAIOIINE IPOCTPAHCTBEHHYIO B3aUMOCBS3b MEX-
1y BbIpYOKoii siecoB u apyrumu ¢akropamu B cpeae I C (Kumar et al., 2007; Wang et al., 2013).
JIst 5TOTO NMPUMEHSIOTCSL pa3jIuvHbIe MOJENIN: MHOXKECTBEHHOU nuHenHo# perpeccun (Culas,
2007; Freitas et al., 2010), noructuueckoit perpeccun (Echeverria et al., 2008) wiu reorpaduye-

CKH B3BeleHHo perpeccun (Pineda et al., 2010). CrutowHoii
Jlns xapaKTepuCTHKU TPOIecCOB (parMeHTaluu 1 \j

PacTUTENILHOTO TIOKPOBA UCCIIE0OBATENN TaKXKe Mpu-

MEHSIOT Mozenb (pparmMenTauuu Puntrepca (Riitters 0.8 4 !epdopuposantnbiii

et al.,, 2000), xoTopasi HIMPOKO aJanTHpOBaHa IJis

OLIEHKH JIECOB C HMCIOJIb30BAHUEM PA3IUYHBIX CITYT- 0.6

HUKOBBIX KapT JIECHOTO IOKpPOBa Ha TJI0OATBHOM pf

(Riitters et al., 2016; Wade et al., 2003), nHarmoHab- 044

mom (Li et al., 2011; Wickham et al., 2010; : Gotmenmolt

Yemshanov et al., 2015) u pernoHanbHOM YPOBHSX

(Dong et al., 2014). Monens ocHOBaHa Ha KiIaccu(u- 0.2+

Kalliu JIECHOTO IOKpOBa Ha (parMEeHTHUPOBAHHbIE 0

YYacCTKH B 3aBUCUMOCTH OT KOJMYECTBA JIECHBIX MHK- ; :

ceneil (10N MUKceNnel ¢ JecoM, OKPYKEHHBIX IMHK- 0 92 04 06 08 1
CeIsIMH, HE OTHOCSIIIIMMUCS K JIECY) U JIECHBIX THKCE- Pff

JIeH, pacroI0KEHHbBIX BHYTPHU JIECHOTO MacCUBa. JTH Puc. 2. Moze/tb, HCTIOb3yeMast /LISt Xapak-
TUNBI (PPArMEHTUPOBAHHBIX YYACTKOB KIACCU(DUILIU- TepHCTHKH KOMIOHEHTOB (parMeHTauu Jjeca.

PYIOTCS B COOTBETCTBUM CO 3HaucHHAMH Py u Py Pr¥ PiXapaKkTepusylor rycrory u coceicTso
(CMEKHOCTbh, CBSI3AHHOCTB) JIECOB /IJIs1 COOTBET-

TaTe KiIacCH(UKAIMKH COOTBETCTBYIOMICTO ydacTKa (Riitters et al., 2002)
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CIIyTHHKOBOTO  CHMMKAa  IHMKCEISIM  NPUCBAMBAIOTCA  YEThIpe  TuUma  (parMeHTAIHH:
«CIUIOIIHOW» (aHen. core), «mneppopupoBaHHBI» WM «iec c mnomsHamu» (perforated),
«omymieyHsIi» (edge), «octpoBHOW» (patch) (puc. 2).

CrnenyronmmM HampaBiIeHHEM, KOTOPOMY IOCBSAILIEHO MHOTO MyOJUKalUi, SIBISETCA OUeHKA
LUCC ¢ ceéa3u c ypoanusayueil u 2opoockumu jecamu (3enénasa ungpacmpykmypa). CtpeMu-
TellbHas ypOaHU3alKs B MUPE BBI3BIBAET CEPbE3HYIO TPEBOT'Y, OCOOEHHO B pa3BUBAIOLINXCS CTpa-
HaX, YTO BBI3BAHO B OCHOBHOM HECAHKIIMOHMPOBAHHOW M HE3aIJIaHUPOBAHHOW 3aCTPOMKON OKpa-
uH ropojaoB (Farooq, Ahmad, 2008; Ghosh, 2019). DTo Takxe NPUBOIUT K PE3KOMY U3MECHEHHIO
na"amadTa 1 SKOJIOTHIECKUM IpodIeMam.

Jns nemmppupoBaHusi TOPOACKHX 3€MENb M BBIICICHUSX MX OT JPYTHX KJIAcCOB Ha3eMHOTO
IIOKPOBA KUTAMCKUMH YUEHBIMU MPEAIATAIOTCS Pa3InYHbIE MHIEKCHI, TAKME KaK HOPMaJIU30BaH-
HBIA Pa3HOCTHBIN MHAEKC HenpoHuaemoil mosepxHoctu (MNDISI — Normalized Difference Im-
pervious Surface Index) (Liu et al., 2013), Ouodusndeckuii KOMIO3UIIMOHHBIA WHICKC
(Biophysical Composition Index) (Deng, Wu, 2012), HopManu30BaHHBINH Pa3HOCTHBIM TOPOJCKOI
ungexc (NDUI — Normalized Difference Urban Index) (Zhang et al., 2015), Hopmann3oBaHHBIH
pasHocTHBIN uHACKC 3acTpoeHHOCTH (NDBI - Normalized Difference Built-up Index) (Zha et al.,
2003; Crartakuc u Ap., 2012) u HOpMaNIU30BaHHBIN PA3HOCTHBINM HMHIEKC OTKPBITHIX YYaCTKOB
(NDBal — Normalized Difference Bareness Index (Li, Chen, 2014). B yactHoctu, ungexc MNDI-
SI ucnonb3yercs ans KiaccupUKanuyd Ha CHUMKaxX TOPOACKHX TEPPUTOPUN 1O KOMOMHUPOBAH-
HBIM JIaHHBIM TEMIIEpaTyphl Ha3eMHOH mnoBepxHocTH Landsat m m300pakeHUIl BBICOKOTO TIPO-
CTPaHCTBEHHOT'O pa3pellleHUs] HOYHOI'O OCBELIEHUS TOpOJAOB, MOJIy4daeMblXx ¢ MexIyHapoIHOM
kocmmueckoi cranuuu (Liu et al., 2013). [lnsa uccnenoBanwmii B 06:mactu LUCC ropoackux teppu-
TOPUN TaK)KE HAXOJAT MPUMEHEHHE JIaHIa(THBIE TOKA3aTeNIH, HA OCHOBE KOTOPBIX OMpPEesieT-
cst uHAeke u3menenus nanamagta (Landscape change index). 3ToT uHIEKC OOBIYHO UCHOB3YET-
csl JUIs OLIEHKM M3MEHEeHUH 3a pa3Hble nepuo/ sl Bpemenu (Liu, Yang, 2015).

Cpeayn MHOTHX NOJE3HBIX MHAECKCOB, MHTEpIpPETUPYOIUX B3anMocBa3b Mexay LUCC ropo-
JI0B U TJI00QJIbHBIM U3MEHEHHEM KIIMMaTta, HauboJjee NCIOIb3yEeMbIM SIBIISIETCS UHIEKC «TeIIOBON
octpoB ropoxa» (UHI — Urban Heat Island), koTopslii TecHO CBsi3aH ¢ KadyecTBOM BO3/yXxa
(Civerolo et al., 2007; Han et al., 2009; Cho, Choi, 2014), notpebnenuem suepruu (Kolokotroni et
al., 2006; Santamouris et al., 2001) u puckom st 310poBbst Hacenenus (Johnson et al., 2012; Rin-
ner et al., 2010). Ins onenkn UHI ycnemnoe npuMeHeHne HaXOIAT CKaHEPHBIE TAaHHBIE TEIMI0BO-
ro ua@pakpacHoro kaHaia (TIR — Thermal Infrared) ¢ pa3nuyHbIM NpOCTPaHCTBEHHBIM pa3peliie-
HueM, BkiIoyass AVHRR (8 km), MODIS (1 xm), HJ-1 B (300 m), Landsat TM (120 m), ASTER
(90 m) u Landsat ETM+ (60 m) Gnarojapsi uX HU3KOW CTOMMOCTH UM BPEMEHHOMY pa3pelieHHIO
(Jusuf et al., 2007; Hao et al., 2016; Kitsara et al., 2018).

Chen u ap. (2006) npemioxunu oneHnBath B3auMocBs3b Mexay UHI u LUCC mo 3aBucumo-
CTH TeMIIepaTyphl OT HOPMAJM30BaHHOTO pa3HOCTHOro BoaHoro uHaekca (NDWI), NDBal (mis
BKJIFOUEHUS TIOKa3aTelsl OTKPBITHIX YYaCTKOB), HOPMaJIM30BaHHOTO Pa3HOCTHOTO BETETAIIMOHHOTO
ungekca (NDVI) u Hopmanu3oBaHHOTrO pasHocTHOro uHuekca 3actpoeHHoctd (NDBI). beuio
YCTaHOBJIEHO, YTO MpH OorpaHnyeHHbIX 3HaueHusax NDVI (<0) koppensiuu mMexay MHIEKCaMu
NDVI, NDWI, NDBal u Temnepatypoil oTpunatenbHsl, B TO BpeMs kak Mexy NDBI u Temmepa-
Typoil HaOIroAaeTCs MOJIOKUTEIbHAS KOPPEIALIUS.

Kuraiickumu yu€HBIMH Ha OCHOBE BPEMEHHBIX PSAJOB M300paxkeHuil cmyTHukoB Landsat TM/
ETM+ u nemorpaduueckux JaHHbIX o ropony llanxait 3a 1997 u 2008 roxsl Obuta mpoBeneHa
KOJIMYECTBEHHAas OlleHKa B3auMocBsA3u Mexay LUCC u Murpanueii HacelleHUsl U UX BIMSHUEM Ha
IIPOCTpaHCTBEHHO-BpeMeHHble Moaenu UHI ¢ ucnonb3oBanuem komriekcHoro mnoaxoaa /133,
I'MC u cratuctuueckoro ananusa (Zhang et al. 2013). Pe3ynpTarel moka3anu, 4yTo 3a HCCIemye-
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MBI IEpHOJ MPOU3OLLIO PACIIUPEHNE ropoAckor 1uiomany Ha 219,50 %, npumepno 72,52 % u3
KOTOPBIX OBLTM B MPOILIOM MaxOoTHBIMH 3emisiMu (24,79 %), zanexamu (21,21 %), necHsIMU
HacaXAeHUsAMH U KyctapHukamu (18,97 %), oTkpbITIMU yuacTkamu (6,62 %) u Bogoémamu (0,93
%). Takue usmenenust B LUCC u yBennueHne ropocKoro HaceleHHUs MPUBEIH K 3HaYUTEIbHBIM
M3MEHEHUSAM B IIPOCTpaHCTBEHHO-BpeMeHHbIX Moaensax UHI na teppuropun [llanxas u3-3a nore-
PpH BOJIOEMOB U OKPBITHIX PACTUTEIBLHOCTHIO 3eMelb (puc. 3).

Onenka LUCC ¢ 1976 no 2003 roas! 6bu1a nmpoBeeHa B ropojickoit 3oue Tupynaru (Uuaus) c
ucrnosib3oBanrueM tonorpaduueckoit kaptel Survey of India 570/6 u /133 LISS III u PAN IRS ID
2003 r. (Mallupattu, Reddy, 2013). CpaBaenne LUCC 3a ucciemyemblii Iepro] MOKa3bIBaeT, YTO
HaOII0AAaeTCsl 3HAYUTENIFHOE YBEIUYEHUE IUIOMAAN TOPOACKON 3aCTPOMKH, TOPOJCKUX JIECOB,
TUTAHTAIMNA U IPYTUX 3eMeb.

st mpyroro uHauiickoro ropoaa bxoman 6su1 mpoeenén anayms LUCC 3a 1991-2016 roasr mo
pa3sHOBpeMeHHBIM H300paxeHusM cryTHuka Landsat (Ghosh, 2019). PesynbraTsl Takxke cBupie-
TEJNBCTBYIOT O TOM, YTO FOPOJ] NEPEXUII CTPEMUTEIbHOE FOPU30HTaNIbHOE paciupenue. [lnomans
Bxonana yemnumiack ¢ 15,8 km” B 1991 roxy 1o 184,5 xm” B 2016 oy pH cpemHeil CKOPOCTH
npupocta 7 kM> rof-1 ¢ y4éToM mpoCTpaHCTBEHHOH AHCHPONOPIHH. Pacmmpenne 3acTpoeHHOM
IUTOIIAI B OCHOBHOM IPOMCXOJIUT 32 CUET CEIbCKOXO3SIMCTBEHHBIX U JIECHBIX 3€MEb.

st repputopun CIIIA 6puta mpoBenena ornenka LUCC 3enénoit nHQpacTpyKTyphl Ha HAIHO-
HaJTBHOM ypoBHE 3a niepro ¢ 1992 mo 2001 roabl. ABTOPBI IPEUIOKIIIA UCTIOIB30BaTh MOP(HOIIO-
THYECKHIA TPOCTPAHCTBEHHO-CTPYKTYPHBIN aHaim3 (morphological spatial pattern analysis) B kaue-
CTBE JOMOJHHUTEIBHOTO CIIOCO0a COCTABJICHUS TEMAaTHUECKOW KapThl 3eNEHONH HMH(PACTPYKTYpHI
mo cuuMkam Landsat, pacmmpe-
HUS reorpauyeckoro oxsara u
BKJIIOYEHUs uHpopMmanuu o0
LUCC (Wickham et al., 2010).
B pesynbTare 6bu10 uaeHTHU-
uupoBano Oonee 100 xabos
(6ompIIME TUTOMATN PACTHTEIb-
HocTH) U okojo 4000 KpymHBIX
ceTelt (3en€HbIe KOPUIOPHI, CO-
eIMHSIONINE Xa0bl) HA TEPPUTO-
pun CIIA, u3 KOTOpBIX HpHU-
MepHo 10 % mnepecekanu rpaHu-
Il IITATOB.

33 u I'NC cranoBsTcs oc-
HOBHBIMH WHCTPYMEHTAMU HpU
OUeHKax 2100a1bHbIX U pecuo-
HAbHBIX 3aNAcoé y2iepooa B
Ha3eMHBIX HKocuctemax. [Ipo-
neccel LUCC, cBsi3aHHBIE C BEI-
pY6KOI71 U HapyLUIEHUsIMHU B Jec- VYposuu unrencusrocti UHI

16 zzekasp” 2003

HBIX HACAXKICHHSX, BHI3BIBAIOT M Oues misi N
smuceno CO, u HX aDHH [ Cpemne nusknii A

: ﬂpyr p Huskuit
KOBBIX Ta30B, YTO BBI3BIBACT [ cpequi S S
IpOKoe OOCYKIeHHEe B Hayd- Bl 5ecowi
HOM cooOuiectse (Stocker et al., MMl Ouens sucowi

2013; Nabuurs et al.,, 2013). B pyc, 3. Yposnu uatencusoctn UHI (ropoackoii TemioBoii 0cTpoB)
HACTOSIIEE BpeMs UMEIOTCS 1aH- . LlaHxaii mo pa3sHOBpeMeHHBIM CIYTHUKOBLIM 1aHHbIM Landsat ™/
ETM+ (H. Zhang et al., 2013)
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HBIE O TOM, YTO B HEKOTOPBIX CIy4asx (puromacca JecOoB B CBSI3U C M3MEHEHUEM KJIMMAaTa yBeIu-
YUBAETCSI, OJJHAKO MPSAMOE WJIM KOCBEHHOE BJIMSIHHME IKCTPEMAJIbHBIX KIMMAaTUYECKUX SIBJICHUN Ha
3TOT mporecc u3ydeHo Hepocrarouno (Ruiz-Benito et al., 2014).

[Tapmxckoe cornamenue B pamkax Pamounoi konBeHnnn OOH 00 w3MeHeHuH KiuMmara, mpH-
Hatoe B 2015 roay 195 crtpanamu, yaensieT OCHOBHOE BHUMAHHUE OTPAHUYECHUIO MOBBIIICHUS TJI0-
OaJlbHOW TeMmIiepaTypsl 10 ypoBHS MeHee 2 °C 1Mo CpaBHEHHIO C JOMHAYCTPHAIBHOW ATOXOM
(ITapmwxckue cormamenus, 2015). IIpoGnemMpl M3MEHEHHS KIMMaTa 3acTaBUJIM MHOTHE CTPaHBI
BEPHYTbCS K BOIPOCY MHBEHTAPHU3allMM HAIIMOHAIBHBIX IAPHUKOBBIX Ta30B U 3al1acOB YIJIEpOJa B
HA3eMHBIX 3KOCUCTEMAX, B IIEPBYIO OUEPE/Db B JIECHBIX HAacaXIeHUAX. [l 3TOro crpaHsl yuacTHU-
1(bl COTJIAIIEHHUS NCIIOJIB3YIOT PYKOBOASAIIME IPUHIUIIEI MeXIpaBUTEIbCTBEHHOM TPYIIIIbI dKCIIEp-
ToB 10 n3MeHeHuto kimmara (IPCC), koTopble cTporo npuaepKuBaroTcsi TpeOOBaHUE MOHUTOPHH-
ra myna yriaepoza B pesyinbrare npoieccop LUCC (IPCC, 2006).

[Tpu peTpOoCHEeKTUBHBIX OLIEHKaX MPOCTPAaHCTBEHHO-BPEMEHHOM JMHAMUKHU 3a1acoB yIiepoja B
¢uTomMacce jecoB OOBIYHO HCHOJIb3YIOT Pa3HOBPEMEHHbIE CITyTHMKOBble M300paxkeHus Landsat
(Galidaki et al., 2017; baprtaneB u ap., 2009; Potter, 2013) m MODIS (Lunetta et al., 2006; Pouliot
et al., 2014). B Teuenue nocieaHux TPEX NECATUIETUN ObUIM pa3paboTaHbl PA3JIMUYHbIE METOJIbI
OOHapy>KeHHsI U3MEHEHUH B pPacTUTEIbHOM (JIECHOM) MOKPOBE C MCIIOJb30BAaHMEM CIyTHHUKOBBIX
n300pakeHMid, BKJIIOYAsl MOCTKIaccupukannoHHoe cpaBHeHHe (post-classification comparison),
maddepeHranuo n300pakeHni, ananu3 riaBHeIXx koMroneHToB (PCA — principal component
analysis) u quddepeHnupoBaHne pa3INIHbIX HHACKCOB pactutenbHocTH (Khatami et al., 2016; Lu
et al., 2004; Nery et al., 2019). O6miee moBeImeHne ToaHOCTH Kiaaccudukanuu kapt LUCC mpen-
CTaBJIIET MPAKTUYECKUN MHTEPEC C TOUKHU 3PEHUS UX MOTEHIIMAIBHOTO UCIIONIb30BaHUS JJI1 MOJe-
JMPOBaHUS U3MEHEHUH 3emiienoib3oBanus (Manandhar et al., 2009).

s onpenenenus nuHaMukH guromaccel U cBszaHHbIX ¢ LUCC moteph yriepoja JeCHbIMH
HacaxaeHussMu B HanmonansHoMm mapke Mapramnax-Xwni3 (Ilakuctan) Obuld MCIIOJB30BaHbI
MYJIbTHCIIEKTPAJIbHBIE CIYTHUKOBBIE M300paxkeHus Landsat 3a 1990, 2000, 2010, 2017 roasl u
JIaHHbIE MTOJICBOW MHBEHTApU3aLIUMH, TOJyYCHHbIE TyTEM CIy4ailHON BBIOOPKH JaHHBIX IO JIecaM 3a
uccneayemMsl nepuos Bpemenu (Mannan et al., 2018). HccnenoBanne mokasaio, 4To B pe3yjbTare
LUCC 3a 27-netHuit nepuos B atMochepy 610 smutHpoBano 154 I'rC (5,70 I'rC rox™), uro ces-
3aHO C aHTPOIIOT€HHBIMH HApPYIIEHUSIMU IPEBOCTOEB B MapKe.

B nocnennue necstunerus B Kurae npousonum cymectsennbsie usmenenust B LUCC, koTopsie
BO MHOT'OM OOYCJIOBJIEHBI €r0 OecIpereIeHTHBIM 3KOHOMUYECKUM pa3BuTHEM. [l aHaiIu3a cooT-
BETCTBYIOIIMX U3MEHEHUN B I€NOHUPOBaHUU C pacTUTENBHOCTBIO U MTOYBOM B nepuof ¢ 1990 mo
2010 rox OblTH MCIIONB30BaHBI pa3HOBpeMeHHbIe AanHble Landsat (Lai et al., 2016). Pe3ynbraTs
JEMOHCTPHUPYIOT 3HAUUTEIILHOE COKpallleHue Tiomasei macrount (-6,85 %; 20,83 x 10° ra) 4 yBe-
nuyeHue miomaaei ropoaos (+ 43,73 %; 6,87 x 10° ra), cenbxo3 yroguit (+ 0,84 %; 1,48 x 10°
ra) u necos (+0,67 %; 1,52 x 10° ra). OGwuii 3amac MOYBEHHOTO OPTAHMYECKOTO YTIEPOIa COKpa-
mascs npumepHo Ha 11,5 mma T C rox', Toraa Kak B IIyiIe GHOMAcChl IeMOHUPOBAIochk 13,2 MiH T
C rox'. Bonbimue notepy yruepona (mpumepro 101,8 maa T C rog') SBISIOTCS Pe3y/IbTaTOM He-
3¢ (HEeKTUBHOTO 3eMJIENIOIB30BaHNs, BKIIIOYAasl JIECHbIE MTOKaphl U Ipyriue HapylIeHUsI.

Jns xutaiickoil npoBUHIMS YKAI3SHH MPOBEIEH MPOCTPAHCTBEHHO-BPEMEHHON aHAJIN3 U BBISB-
JIEHbI 3aKOHOMEPHOCTH BbIOpocOB yriepona B mepuon 1970-1990 u 1990-2010 rr., BRI3BaHHBIX
LUCC (Zhu et al., 2019). IIpu uccnenoBanuu ObUTM UCTIOIB30BaHBI U(POBBIE KAPTHI 3€MJIETIONb-
30BaHMs MPOBUHIMK U CIyTHHKOBbIe naHHble Landsat MSS/TM/ETM+. Pe3ynbTarhl uccienoBa-
HUS MOKA3aJIM MOCJIEI0BATEIbHOE COKPAILEHUE IUIOLIa/Iel CEbCKOXO03SMCTBEHHBIX yroaui (2,8 x
10° ra mwmu - 9,15 % u 5,9 x 10° ra umu - 20,49 %) u mactoum (3,4 x 10* ra wm -10,73 % u 1,5 x
10° ra unm - 54,1 %), a TaKxke ycToiuMBOE yBenMUeHHe mIomany aecos (2,0 x 10* ra umm 0,33 %
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u 1,7 x 10° ra nmm 2,81%) n roposckoii 3actpoiiku (2,07 % 10° ra nm 78,41% n 6,49 x 10° ra mm
137,8%) (puc. 4). B npoBunuuu Yxoamzsan ¢ 1970 mo 1990 rox npousonuio cokpaiieHue npumep-
HO 8,3 MiH T oOmiero 3amaca yriepoja, BKIO4as B pacTuTelbHOCTH Ha 0,4 MIIH T M OpraHuke
noyB Ha 7,9 MiH. T. B 1O %e Bpems ¢ 1990 nmo 2010 roa mpousonuio cokpamieHue npumepso 17,5
MJIH T HakorwieHHoro C, 4To mpezcTaBiiseT coboi Oananc 2,8 MIH T IEIOHMPOBAHHOTO YIiepoaa
pPacTUTENBHOCTBIO U ero cHuxkeHue Ha 20,3 muiH T C B nouse.

Kapra nazemuoit 6momaccel (AGB - aboveground biomass) 3a 2008-2010 rr. Opl1a ToJIy4eHa ¢
paspemenueM 30 M 117151 GopeanbHBIX JecoB B OacceitHe peku KOkoH Ha AJSICKe ¢ UCTTOJIb30BaHUEM
nanabix Landsat u HazemubIx m3mepenuit (Ji et al., 2015). s sToro aBropamu Obiia pazpadboraHa
MOJIeJIb MHOXKECTBEHHOM perpeccuu, BKIroydaromias rnosesble naHHble AGB, nokasarenu cnek-
TPaJILHOM SPKOCTU PACTUTEIHLHOTO MOKPOBA MO M300pakeHussM Landsat 1 MHIIEKCHI pacTUTEIHHO-
ctu. [Ipu onieHKe pernoHaNIbHONW HAa3eMHOU TIIOTHOCTH yriiepoaa (AGB) cybanbnuiickux JIecoB ¢
YMEpPEHHBIM KJIMMAaTOM Ha ceBepo-3amnaje Kurtas ObLIM MHTETpUpOBaHbl JAaHHBIC JTUJAAPHON CHhEM-
ku 1 n3o0paxxkenuit Landsat (Du et al., 2015). PazpaboTtannast Mojenb A KpyMHOMACIITaOHBIX
o1leHOK oOBbsicHmIa 76 % mucnepcun AGB necoB mpu cucremarnyeckon ommoke 27,9 T C ral,
JlJis OLICHKU M KapTUPOBaHUS 3aMacoB YyIiiepoja B MoJ301ax AMAa30HKHU Takke Oblja MpuMeHeHa
koMOuHarwms nzobpaxenuit /[33 (Shuttle Radar Topographic Mission (SRTM), Landsat 8 u nosne-
BBIC JJaHHBIC, YTO MO3BOJIMJIO TOYHO BBIICTUTHh U KIACCH(DHUIIMPOBATH Pa3HbIC TPYIIIBI PACTHTEIb-
HOCTH C Pa3JIYHBIM THAPOIOTHYecKHM pexkumoM 1ouB (Pereira et al., 2015).

Hcnanckue yd4€HbBIE MCIOJIB30BAIM BPEMEHHBIE psiibl n3o0paxennid Landsat (1984-2009 rr.)
JUIs OLIGHKM M3MEHEHHWH B OMoOMacce JIECOB C MPeo0dJialaHueM COCHBI IIeHTpalbHON vacT Mcma-
Huu (Goémez et al., 2012). [{ns BeIsiBIEHUS U3MEHEHUI Ha ypoBHE JaHImadTa ¥ pacrpeneneHus
JIECOB HCIOIB30BAIUCH METOABl 00BEKTHO-OPUEHTHPOBAHHOTO aHanlu3a. Pe3yiabTaThl CBUIETEINb-
CTBYIOT, UTO 0O0IIasi TUIOMIAlb COCHOBOTO Jieca 3a UCCIIEeAyEeMbIi 25-TeTHUI Mepro]| yBEeIHuniIach
Ha 40 % — ¢ 1211 xm* 10 1698 kM?, Cieyst JTOTHKE MPOIECCOB HAKOILICHHS YIIIepo/Ia, HAIU pe-
3yJbTAThI MOKA3BIBAIOT, YTO ITO TAKKE BEIET K YBEINYCHHIO ICTTIOHUPOBAHHBIX 3aMacOB yIiepo/a.

N

a b
A 1970-1990 1990-2010

CeIbX03 Yroabsi
nec
TpaBbl
BOJA
3acTpoiika
e e = 1 Munu apyrue
0 2040 Lo 120 180 B i3 cHCHUS

Puc. 4. lIpocTrpancreennoe pacnpeneaeane LUCC B Yaosnzsane: a) ¢ 1970 mo 1990 r. u 6) ¢ 1990 mo 2010 r.
KpacHbIM IBeTOM IOKa3aHbI IVIOLIAIH, IPe0OPaA30BaHHbIE B IPYroil THN 3eMJIENO0JIb30BaAHMSA.

Emé onuum pacnpocTpaHEHHBIM TUIIOM HCCIIEIOBAaHUMN SIBISIETCS ouenka eauanua na LUCC
KOMReKca pa3iuyHslX )akmopoe, UMEIoUNX BHENIHNE (BOCTPEOOBAHHOCTh HAa MEX IyHapO.-
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HBIX pbIHKaX, MOJUTHKA B O0JACTU OKPY)KAIOILEH Cpeibl, MEXKAYHAPOJHbIE COIJIALIEHUS U T.II.)
WIA BHYTPEHHHE TNPHYUHBI (POCT HACENIEHUS, Pa3BUTHE HHQPPACTPYKTYPbI, POCT SKOHOMHUKH)
(Biirgi et al., 2005). Ilpu ucnonb30BaHNN B ATHX MCCIEAOBAHUAX aHAIIN3a «OOHAPYKCHHS U3MCHE-
Huit» /133 1 'NC ciocoOGCTBYIOT BKIIFOUSHHUIO TAKMX BAXKHBIX (PaKTOPOB, KaK BHICOTA HAJI YPOBHEM
MODpsI, HaceNEHHbIE MYHKTHI, YAAICHHOCTh OT Jopor u paccrosiHue oT pek (Nurda et al., 2020;
Zhang et al., 2019). B 6onpmmHcTBe Takux ciydaeB LUCC umeeT oTHOIIEHHE K BBIPYOKE JIECOB
WJIU TIEPEBOJTY 3€MeJIb TIOJ1 IpyTrue BU bl mojas3oBanus (Acheson, McCloskey, 2008).

Ha ocnoBanum n3ob6paxenuii Landsat (¢ 1979 mo 2010 rr.) uccnegoBanbl GU3MYECKUE U COIU-
aIbHO-3KOHOMUYeckue (hakTopbl, Brnusitonue Ha TeHaeHmn LUCC (jecHble HacaXIeHUs) B [ICH-
tpansHoil Aprentune (Hoyos et al., 2018). [{nst aToro 6puta paspadorana ['MIC ¢ TemarnyeckuMu
KapTaMH, [TOKa3bIBAIOIIUMH PA3JIUYHbIE JBUKYIIUE CHJIBI ITHUX IPOLECCOB, U MPOBEAEH aHAIN3
PCA. OcHOBHOI TeHJEHIIMEN COKpAaIlleHUs TUIOIIA el JIECHBIX HAaCaXXIEHUI B 3TOM PETHOHE SBUJI-
Csl IEPEBO/I 3€MEJIb B CEJILCKOE XO3SIICTBO.

Jns HanponanbHOro ypoBHs Muauu paspaborana moaens LUCC, ocHOBaHHAas Ha JaHHBIX MH-
BEHTapH3aIMK BceX €€ IITaTOB U CIYTHUKOBBIX M300pa)KEHUI BHICOKOTO Pa3pelIeHHs 3a IEPHO]] C
1960 mo 2010 rox (Moulds et al., 2018). IIpoctpancTBenHno-BpeMmenHas nunamuka LUCC ¢ 1986
o 2014 rox B 6acceiine BepxHero TeueHus peku Tenuc-IIupuc (bpasmibckoit AmazoHun), IpoBe-
NEHHAs Ha OCHOBE yNpaBisieMoi kinaccudukanuu nzodpaxennii ceacopoB TM (Thematic Mapper)
Landsat 5 u TIRS (Thermal Infrared Sensor), mokaszana HanOOBIIME PA3IAYHUS 32 TICPUO UCCIIE-
JOBaHUS ISl TEMAaTHUYECKMX KJIACCOB «CEIIbCKOXO3SHUCTBEHHBIE YroIbs» M «TPONMUYECKHUNA
nec» (Zaiatz et al., 2018). Ha ocHOBe TemaTmueckoi kimaccudurammuu n3odpaxenuit Landsat 3a
1997, 2004 u 2011 roasl METOIOM «eCTECTBEHHBIX IpaHHI (natural breaks classification) ObuTH
npoananuzupoBanbl LUCC u skosoruyeckas ya3BUMOCTb peroHa SlHbanb (npoBuHims HI>HbcH,
KHP), npuaep:xuBatoiierocs moJMTHKA BO3BpaTa CeNbX03yrouil B JecHoi Goni. B coueranuu c
JAHHBIMU O 3€MJIETIONIb30BAaHUH, COLIMAIbHO-DKOHOMUYECKHMH TOKA3aTeNIIMU U COCTOSIHUEM IpH-
POIHBIX PECYPCOB KOJIOrMYecKasl yI3BUMOCTh TEPPUTOPUH SIHbaHb OILIEHHWBAETCS C MUCIOJIb30BaA-
HUEM MOJIENIH MTPOCTPAHCTBEHHOTO aHanu3a rinaBHbIX koMoHeHT (SPCA) (Hou et al., 2016).

PerpocniektuBnbiii ananu3 auHaMukun LUCC u €€ npuuuH, NPOBEIEHHBIA C UCIIOJIb30BAHUEM
CIYTHUKOBBIX M300paxxenuil Landsat 5 TM 1984, Landsat 5 TM 1999 u Landsat 8 TM 2015 nns
Oacceitna pexu bepecca (Dduonus), mokazan HeOOJbIIOE PUPAIIEHUE TIIIOMAEH JTECHBIX HaCaX-
nenuit ¢ 1999 no 2015 rox co ckopoctsio 7,1 ra rox’, uro B cBOIO odepe]b CBSI3aHO C BOBJICUCHHU-
€M MECTHBIX COOOIIECTB B IOCAJKYy JE€PEBLEB BOKPYr ycaaed M CelbCKOXO3SHCTBEHHBIX (epM
(Meshesha et al., 2016). Ouenka nunamukun LUCC B benune ¢ ucnons3zoBanueM kapt CCI-LC
(anen. Climate change initiative land cover) EBpomeiickoro xocmuueckoro arentctBa (ESA) 3a
2001, 2008 u 2013 roas! B nporpamme QGIS no3sonunu criporsosuposats Ha 2025 u 2037 roabl
TEMITbI YBEJTMUEHUS TOCEBHBIX IUIOIIAACH U JIECOB, @ TAaKXKe 3HAUUTEIIbHOE COKPAIEHHE IJIOIIA 1
3emenb caBaHHbl (Guidigan et al., 2019). Knaccudukamust pa3sHOBpeMEHHBIX CITYTHUKOBBIX HM300-
paxenuit cepun Landsat u meTon «oOHapyxeHUs1 u3MeHeHu» (anen. change detection) ucmonb3o-
Baych A kaptupoBanusi LUCC pernona 3am6e3u (Hamubust) 3a mepuon B 1BaAaTh MECTh JIET,
paznenéuubix Ha Tpu dTana (1984-1991, 1991-2000 u 2000-2010). UccnenoBanue mokasaio, 4To
Ha MPOLECChl U3MEHEHHH JIECHOTO MOKpPOBA B 3TOM PErMOHE BIUSIOT YEThIPE MPOCTPAHCTBEHHO-
BpEMEHHBIX (paKTOpa: paccTosHUE 0 ONmXkKailiiel 1oporu, pacCTOsHUE 10 HACEIEHHBIX ITYHKTOB,
MIJIOTHOCTh HACeJIEHUs U CPOKHU Mexy noxkapamu (Kamwi et al., 2018).

VYuénsle u3 Mopaanuu oneHuwiu npoctpancTBeHnyo nuHamuky LUCC B Gacceitne pexu Sp-
myk (Mopnanwus) 3a 22 roma (1987-2009) meromamu oOHapy:KeHUS H3MEHEHHH U TO JaHHBIM
NDVI. Pe3ynbTaThl aHanu3a BbIIBWIM PAIMKAIbHbIE N3MEHEHUS B CHUKEHUH TUIOILIAJIECH JIECOB: Ha
14 % mox cenbCKOXO03UCTBEHHBIE YToabs U 2 % Mo TopoaAcKyto 3acTpoiiky (Obeidat et al., 2019).
Uccnepoanue qunamuku LUCC ¢ 1992 no 2018 rox taxke mokaszajio yMEHbIIEHUE ILUIOIIaIen
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JIECHOI'O TIOKpOBa Ha Tepputopuu ceBepHbiX I'mmanaes Kammupa (Muaus) 3a cuér pocra Hacele-
HUS 1 SKOHOMHYECKOT'O POCTa, PaCIIMPEHMsI IUIOIIAAEH 10 3aCTPONKY IIOCEIEHHUH U CaJI0BOJICTBO
(Fayaz et al., 2020).

ITo nanueiM Landsat, CpeauzemHoMopckue Jjieca paiiona Jlxabans Axmap (JIuBus) morepsiiu
3a 32 rona (1985-2017) B pesynsrate LUCC 39 % cBoeii miomaan, npu 3TOM CaMblil BBICOKUI
MPOIICHT CBeACHUS JiecoB Habmonancs B mepuoa 2010-2017 rr (Alawamy et al., 2020). B U3zpaune
Ha ocHOBe uHAekca NDVI, nonyyennoro no 14-netHum BpemeHHbIM psiiam MODIS mexay 2000
u 2014 rr., ycranosneno Biausinue Ha LUCC nByX OCHOBHBIX (DaKTOPOB - PACIIUPEHUE CEIBCKOXO0-
3stiicTBEHHBIX yroauii u ropogos (Levin, 2016). Poct nacenenus, ypOaHuzamus U paciidpeHue
MaXOTHBIX 3eMeJb SIBUIMCH TIABHBIMU MPUYUHAMH COKpAIICHHS JICCHBIX 3eMenb Ha 25 % B Oac-
ceifHe peku ABam (ABCTpayiusi) MO JAaHHBIM CIIyTHHKOBBIX M300paxkenusi Landsat ¢ 1988 mo
2018 rr. (Tadese et al., 2020). B Cpeanem I[ToBomxse Poccun 3a nepuon 2001-2014 rr. mo 5 oc-
HOBHBIM KJIaccaM Ha3eMHOT'0 IMOKpOBa TeMaTndeckux kapT Landsat HaOiromaeTcsi CHIYKEHHE TII0-
au Kiacca «iec» Ha 2,7 %, yBelnueHHue Kilacca «KyCTapHUKOBO-JIPEBECHON PACTUTEIHHOCTHY U
KJIacca «He MOKPBITOro pacturenabHocThion Ha 0,6 % (Kypbanos u ap., 2016). CyiiecTBeHHOE CO-
Kparnienue JiecHoro nokpona Ha 41 % c 1925 o 2012 roa takke Habm01an0Ch B pailone Maykku
(okpyr B unauiickom mrare Kepana), 4ro OblI0 BRI3BAHO 3aTOIUVIEHUEM 3€MEJb B pe3yibTaTe CTPO-
UTENILCTBA THIPOAIEKTPOCTAHIINY B BBIpYOKOii JecoB (Ramachandran, Reddy, 2017).

3aKkJjI04eHne H BBIBOADI

AHanu3 IMTEepaTypHbIX MCTOUHUKOB I10Ka3all BHICOKHMM HCCIe10BaTeNbCKUI HHTEpEC K ITpooiie-
Me LUCC u ucnons3zoBanuto texnosnorut /133 u ['MC nns pemenus 3aga4d no OLEHKE AUHAMUKU
PacTUTETHLHOTO OKPOBa BO BCEM Mupe. OCHOBHASI 4aCTh HayYHbIX MYOJUKALUN 110 paccMaTpUBa-
eMOl TeMaTHKe Oblila HaliJleHa B aHIJIOSA3BIYHBIX JKypHAJlaX, HHAEKCUPYEMBIX B MEXIyHapOIHON
HayKOMETPHUYECKOH Oa3e TaHHBIX Scopus.

BONBIIMHCTBO POCCUICKUX HAYYHBIX KOJJIEKTUBOB ITPOBOSAT OLIEHKH JMHAMUKH PaCTUTEIIBHO-
ro (JecHoro) MokpoBa B Pa3lMYHbIX pernoHax crpansl meronamu /133 u ['MC 6e3 mpuBs3ku K
MexayHapoausiM nporpammaM IGBP u GLP. OcHoBanueM s Takux MCCIENOBAHUN B POCCHM-
CKUX MyOJMKanusx OObIYHO cCiyXaT (elepajbHble LEeJIEBbIE U TOCYAApCTBEHHBIE MPOrPaMMBI:
«UccnenoBanuss W pa3pabOTKM IO TNPUOPUTETHBIM HAMNpPABICHUSAM Ppa3BUTHUS HAy4yHO-
TexHojoruueckoro kommuiekca Poccun Ha 2014-2020 roae», «Pa3Butre Hayku U TEXHOJOTHI Ha
2013-2020 roasi», «Hayuno-texnomornueckoe pazsutue Poccuiickoit deneparumy.

ITpu ouenkax LUCC y4y€HbIMU HCTIONB3YETCS MHUPOKUI CIEKTP METOINYECKUX MOIX0/0B, /10-
CTYIHBIX CITYTHUKOBBIX M300pa)K€HHI M IeolpoCTpaHCTBEHHBIX Mojeneil. MccnenoBanus Takxke
HUMEIOT Pa3HyIO HANpPaBJIEHHOCTD, B CBSA3M C OTUM MBI BBIIEIWIN IISITh, HA HAI B3IVISI, UMEIOINX
HENOCPEACTBEHHOE OTHOIIEHNE K TMHAMHUKE PACTUTEIBHOIO (JIECHOTO) MOKPOBA U 3KOJIOTUYECKUM
npobieMaM COBpEeMEHHOro Mupa. K TakuM HampaBiIeHUSIM HCCIEIOBaHUN B 00JacTH OLEHKH
LUCC namu Oblin OTHECeHBI: 1) mpobiema u3MeHeHHsI KIIMMaTa U HapyIIEeHHOCTH JIECHBIX YKOCHU-
CTeM; 2) MOHUTOPHUHI U OlLIEHKa (PparMEeHTUPOBAHHOCTH PACTUTEIBHOTO (JIECHOTO) MOKPOBa; 3)
ypOaHu3alus U TOpOACKUE Jieca (3es€Has nHGPacTpyKTypa); 4) olleHKa T7100adbHbIX U PETHOHAIIb-
HBIX 3aracoB yriepoza; 5) ouenka BinusiHus Ha LUCC komIuiekca pa3andHbIX (hakTOpOB.

[IpoBen€HHbBIN aHAMW3 TUTEPATYPHBIX AaHHBIX ¢ Hadana 2000-X ro/loB MOKa3bIBa€T yCTOWYHU-
BBII pOCT AeTanbHOCTU uccienoBanuil no trematuke LUCC B cBsI3U ¢ yBEJIMYEHUEM JTOCTYIHBIX
JUI IIMPOKOTO Kpyra IOJIb30BaTeNel reonpoCTpaHCTBEHHBIX JAaHHBIX (cnyTHUKH, BIIJIA) u nx
paspeleHusl.

B nenom KoMImiIeKCHOE UCIIOIb30BaHUE T€ONPOCTPAHCTBEHHBIX JaHHBIX C Pa3JIMYHBIM I'€0IPO-
CTPAaHCTBEHHBIM U BPEMEHHBIM pa3pelIeHHeM JUIi MOHUTOPUHTA JIECHOTO MOKpOBa OyneT crnocoo-
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CTBOBATh YCIEIIHOMY PEILIEHUIO BOIPOCOB YCTOMYMBOIO PA3BUTHUSI U CHUKEHHIO HIKOJIOTHYECKUX
PHUCKOB.

Hccneoosanue evtnonneno npu unancosoii noooepycke PODOH ¢ pamkax Hayunozo npoekma
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Vegetation phenology is the study of periodically recurring patterns of growth and development of
plants, which affect terrestrial ecosystem carbon, energy budget balance, fire disturbance, and climate—
biosphere interactions. The increases in surface temperature had already altered the extent of vegetation
phenology. Vegetation phenology can make some responses to climate factors, and the current climate
change has attracted more research for the trend of vegetation phenology and its causes. The purpose of
this paper is to investigate the spatial and temporal trend of forest phenology at mid and high latitude in
the Northern Hemisphere (50°N-90°N, 180°W-180°E) over the period 2001-2017 using Collection 6
MODIS Land Cover Dynamics (MCDI12Q2) datasets. The results indicated that SOS has a significant ad-
vanced trend, EOS has a significant delayed trend and LOS showed a significant extended trend on the
whole. The significant advancement of SOS and extension of LOS mainly occurred in central Russia, the
north and southwest of North America. Meanwhile, EOS showed a delayed trend in the south of Russia, the
north and southwest of Canada and Alaska.

Keywords: forest phenology, climate change, MODIS, remote sensing, Northern Hemisphere, GEE.

Introduction

The climate determines the phenology through its influence on temperature and precipitation.
Climate change affects vegetation productivity changes, and it also causes changes in the biogeo-
chemical cycle, which affect the structure of communities and ecosystems (Piao et al., 2008). Ac-
cording to the 2013 Report of IPCC (the Intergovernmental Panel on Climate Change), global
warming is intensified with the impact of human activities (IPCC, 2014). From 1880 to 2012, the
average surface temperature on a global scale increased by 0.85 °C, which affects vegetation phe-
nology.

Vegetation phenology is a sensor of climate change (Wang, 2019). Vegetation has a better re-
sponse to changes in the external environment, and this response is easy to observe, mainly in the
phenological characteristics of the start of growing season, the end of season, etc. At the same
time, phenological change affects the exchange of carbon, water and energy between vegetation
and the atmosphere so that it is the driving force of global climate change (Loboda et al., 2017;
Delbar et al., 2015; Richardson et al., 2013; White et al., 2009). Therefore, the study of vegetation
phenology changes in the long-term sequence is very important.

Due to the advantages of remote sensing technology in large-area synchronous observation and
periodicity at regional and global scales (Myneni et al., 1997; Zhang et al., 2003), the products
based on remote sensing satellite data are produced. NDVI and EVI can well show the growth dy-
namics of vegetation. The most commonly used remote sensing phenological product sources are
NDVI derived from the Advanced Very High Resolution Radiometer (AVHRR) (Tucker et al.,
2001), NDVI derived from the Systeme Probatoire d’Observation de la Terre (SPOT), as well as
NDVI and EVI derived from the Moderate-resolution Imaging Spectroradiometer (MODIS). Alt-
hough the time range of AVHRR data is long, its spatial resolution is only 8 km. The SPOT NDVI
dataset has a spatial resolution of 1 km. Compared with the former two, MODIS data has a higher
spatial resolution, which is of great significance for the distribution study of forest phenological
change trend.
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Previous studies have reported hemispheric or local changes in growing seasons (Vorobev et al,
2019; Jeong et al., 2009; Jeong et al., 2011; Myneni et al., 1997; Shen et al., 2014; Zhou et al.,
2001). In recent years, some researches indicated a global warming hiatus between 1998 and 2012
(Medhaug et al., 2017). Therefore, the hiatus of global warming has attracted widespread attention.
For instance, Fu et al. (2015) demonstrated that the apparent response of leaf unfolding to climate
warming has significantly decreased from 1980 to 2013 in seven dominant European tree species.
The previous studies (Jeong et al., 2009; Jeong et al., 2011; Wang et al., 2019) found that the trend
of vegetation growth season advancement has been stagnant during the global warming hiatus.

In some countries and regions, the advanced onset of vegetation growing season and the accu-
mulation of forest fuel caused by climate warming have also led to an increasing number of large
and severe wildfires (Westerling et al., 2006). Therefore, the study of forest phenological changes
has an essential reference for understanding the occurrence of wildfire. Accurate trend information
of forest phenology is essential to understand regional-to-global carbon budgets and climate
change (Peng et al., 2017). However, there are few studies on forest phenological changes at pre-
sent.

Purpose of work

The main goal of this study is to investigate the change trend of forest phenology in the middle
and high latitudes of the Northern Hemisphere. Furthermore, the spatial distribution of the chang-
ing trend of forest phenology in different regions is analyzed, thus making a preliminary analysis
of the response forest phenology to climate change.

Area of research

The Northern Hemisphere has the largest climate warming at middle and high latitudes, which
is about two times faster than other areas. Moreover, the vegetation of terrestrial ecosystems in the
mid-high latitudes of the Northern Hemisphere is very susceptible to climate change. Besides, this
region is relatively less affected by human activities and can better reflect the impacts of climate
change on vegetation phenology. Therefore, we selected the Northern Hemisphere with latitude
greater than 50° to estimate forest phenology.

Materials and methods of research

Data

Phenology data from MCD12Q2

Vegetation phenology data is obtained from the Collection 6 (C6) MODIS Land Cover Dynam-
ics Product (MCD12Q2), which offers global land surface phenology metrics at 500 m spatial res-
olution and annual time step since 2001. Phenometrics is derived from time series of MODIS ob-
served land surface greenness, particularly time series of the 2-band Enhanced Vegetation Index
calculated from MODIS nadir BRDF adjusted surface reflectance (NBAR-EVI2). It contains many
science data sets (SDS), including greenup, dormancy, QA Overall and so on. In this study,
QA _Overall was used to quality control, SOS was showed by green up and EOS was showed by
dormancy. LOS was calculated by the difference between SOS and EOS. The dataset was accessed
and processed on the platform of Google Earth Engine (GEE).

Land cover from MCD12Q1

The vegetation classification data used in this study comes from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Land Cover Type Product (MCD12Q1), which provides a suite
of science data sets that map global land cover at 500 m spatial resolution. It includes five legacy
classification schemes, such as the International Geosphere-Biosphere Programme (IGBP), Uni-
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versity of Maryland (UMD), Leaf Area Index (LAI), BIOME-Biogeochemical Cycles (BGC), and
Plant Functional Types (PFT). The dataset of IGBP classification schemes was chosen in this
study. Evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, de-
ciduous broadleaf forests, mixed forests, closed shrublands, and open shrublands were selected as
the study plots for this research. The legend and description were showed in table 1. A multiyear
stable forest-covered region was generated from annual MCD12Q1 over the period from 2001 to
2017. The dataset was processed and downloaded on the GEE platform.

Tablel
MCD12Q1 International Geosphere-Biosphere Programme (IGBP) legend
Value Name Description
1 Evergreen Needleleaf Forests Dominated by evergreen conifer trees (canopy >2m). Tree cover >60%.
Domi leaf 1 >2m). T
5 Evergreen Broadleaf Forests ominated by evergreen broadleaf and palmate trees (canopy >2m). Tree
cover >60%.
3 Deciduous Needleleaf Forests Dominated by deciduous needleleaf (larch) trees
(canopy >2m). Tree cover >60%.
. . =
4 Deciduous Broadleaf Forests Dominated by deciduous broa(ilza(l)fo /trees (canopy >2m). Tree cover
0.
Mixed Forests Dominated by ngpbdraespdunsmoilerergreen (HDH)% of each) tree
Closed Shrublands Dominated by woody perennials (1-2m height) >60% cover.
Open Shrublands Dominated by woody perennials (1-2m height) 10-60% cover.
Data Analyses

The changing trend of each pixel in time series was calculated by the linear regression model
(Xu et al., 2004) through IDL programming. The slope of each pixel was calculated by the unitary
linear regression analysis method. The inter-annual rate of change and the inter-annual spatial dis-
tribution of each parameter in the study area were obtained from 2001 to 2017. The calculation
formula is as follows:

n n n
anixXi—ZixZXi
i—1 i—1

SLOPE = —=— -
nxy ir=(Q. X,y
i—1 i1

where i is serial number of year, X;is the actual 1;ixel value for a year. If SLOPE is greater than 0,
the parameter is increasing trend, and vice versa.

T-test was used to evaluate the significance of the results (Li,2019). It was calculated as fol-
lows:

; (D
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= 5

where S, is the standard deviation of regression coefficient, S, is the standard error of estimation
for regression equation.

Research results

The overall trend of forest phenology at the middle and high latitudes of the Northern Hemi-
sphere was analyzed (fig.1). From 2001 to 2017, SOS (start of the growing season), EOS (end of
growing season), and LOS (length of the growing season) had a significant trend at the P < 0.01
level. Consistent with the previous studies (Chen et al., 2020; Pulliainen et al., 2017; Tucker et al.,
2001), we found that SOS was significantly advanced (P<0.01), the advance rate was 0.70 days
year. In contrast to our result, an earlier study (Wang, 2019) reported that EOS has a postpone-
ment trend at the end of growing season in the Northern Hemisphere from 1982 to 2015, but the
change is not significant. However, we found that EOS showed a significant delayed trend from
2001 to 2017 with a rate of 0.27 days year™. The small differences in results may be due to differ-
ences in the study area and time range. It has been previously reported that LOS showed a post-
poned trend with a more pronounced change range from 1948 to 1996 (Ahas et al., 2000). In our
result, LOS was significantly extended (P<0.01) from 2001 to 2017, the extended rate was 0.96
days year.
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Fig.1. Vegetation phenology parameters trends. across forest area of mid and high latitude in the Northern
Hemisphere(50°-90°N,180°W-180°E) from 1982 to 2014, including two snow parameters:(a) SOS
(start of growing season),(b) EOS (end of growing season) and (¢c)LOS(length of growing season)

For the SOS, 79.41% of the area showed an advancement trend. 15.50% pixels were signifi-
cantly advanced, which mainly distributed in central Russia, the north and southwest of North
America. 20.59% of the pixels had a delayed trend and 0.32% were significantly delayed. The rea-
son for this result may be the melting period of snow in the Northern Hemisphere high latitudes,
which is significantly advanced with the warming of the climate, thus leading to the advancement
of the spring phenology of vegetation (Pulliainen et al., 2017).

EOS showed an advanced trend of 32.06% on the study area; 67.94% of the area showed a de-
layed trend. The delayed pixels accounted for a greater proportion of the pixels than the earlier
ones. Among them, 1.75% of pixels were significantly advanced and distributed in north central
Russia. 10.51% pixels were significantly delayed, mainly distributed in the south of Russia, north
and southwest of Canada and Alaska.

For the LOS, 22.19% of LOS has a short trend, and 77.81% of LOS showed an extended trend.
Among them, 0.92% of pixels were significantly short and 19.54% of pixels were significantly
extended. The spatial distribution is roughly similar to that of SOS. It is worth mentioning that the
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significantly extended area of LOS is greater than that of EOS, resulting from a synergistic effect
with the advancement of SOS.
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Fig. 2. Spatial patterns of vegetation phenology parameters trend across forest area of mid and high latitude
in the Northern Hemisphere (50°-90°N,180°W-180°E), including:(a) slope of SOS (start of growing season),
(b) significance of SOS, (c) slope of EOS (end of growing season), (d) significance of EOS, (e) slope of LOS
(length of growing season) and (f) significance of LOS (length of growing season)
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Fig. 3. The proportion of changing trend pixels at different significance levels in ALL pixels in the study
area. ALL represents the total number at ALL significance levels, slope<0 represents the advanced trend
of parameters, and vice versa, including: (a) SOS, (b) EOS, (c) LOS
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Conclusions

Based on long-term satellite data, our results found that SOS has a significant advanced trend,
EOS and LOS has a significant delayed and extended tendency throughout the period 2001-2017
on the forest area of mid and high latitude in the Northern Hemisphere (50°N-90°N,180°W-180°E)
on the whole. The significantly advanced SOS and extended LOS are mainly distributed in central
Russia, the north and southwest of North America. The significantly delayed EOS is mainly dis-
tributed in the south of Russia, the north and southwest of Canada and Alaska.
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OIIEHKA U3MEHEHM B JIECAX IOTA CPEJJHEPYCCKOM BO3BBIIIEHHOCTH
ITO CIIYTHUKOBBIM TAHHBIM

O.A. Tepexun
benropoackuii rocyaapCTBEHHBIN HAMOHAJIbHBIA UCCIIEI0BATENILCKUI YHUBEPCUTET

Oyenxa usmeneHull 6 jiecax, 00YClOGNEHHBIX GIUSHUEM He2AMUBHLIX (PaKmMopos, A61Aemcs 0OHOU U3
KII04eBbIX 3a0ay MOHUMOPUH2A JIECHbIX 3eMelb. B cmambe u3nooicen HO8bill NOOX00 K A8MOMAMU3UPOEAH-
HOMY 2€0UHDOPMAYUOHHOMY KAPMOSPAPDUPOBAHUIO YUACMKOS8 1ECO8 C HaPYUleHHbIM Opegocmoem. Memoo
OCHOBAH HA OYeHKe USMEHEHULl 8 BbICOMAX JIECHbIX HACANCOEHUT C UCNONb3068AHUEM CNEKMPAIbHO20 OMKIU-
Ka. Hccaeoosanue 6pinonneno Ha npumepe jecHulx maccueos 102a CpeonepyccKkou 8036bIULEHHOCU, 0X6a-
mulearoujeco meppumoputo benzopoockoii oonacmu. J[na oyenku 6blcom npeosiodHceHo UCNoNb308amy 102U-
CMUYecKyl0 MOo0elb, ORUCLIBAIOWYIO 3ABUCUMOCIb KOIPpuyuenmos cnekmpanvhou sapkocmu SWIR-
ouanazona om evicomvl Opegocmos. [[na nosvliuleHuss moYHOCMU OYEeHKU 8bICOM NPeONONCEHO UCHONb3O-
6amv 8UObL MoOeell, UCNONb3YIoOWUe CHEKMPANbHble XAPAKMEPUCTUKIU ¢ KOHKPEMHbIX CNYMHUKOBLIX CEH-
copos. Kpumepuem unouxayuu y4acmko8 HapyuleHHOCmu OpeeoCcmost AGIAEMCs Pe3Koe CHUIICEHUE 8blCO-
Mbl JIECHBIX HACANCOEHUT, 00YCI06TIEHHOE IUAHUEM He2amUuHbIX pakmopos. OzpanuieHusmu npumMeHenus
Memooa AGNAIOMCS PEUOHATIbHBIE 0CODEHHOCU JECHBIX IKOCUCMEM, HAMUYUE YHACKO8 MeHell OM JECHbIX
MACCUBO8, PACNONOANCEHHBIX HA KpymuIx ckaoHax. C ucnonvp308anuem npeonodtcenHoco nooxo0a 6binoaHeHO
eeoungopmayuonnoe kapmozpaguposanue usmenenutl 6 necax roea CpeoHepyccKoll 8038bIUEHHOCTU 6
nepuoo cepeduruvt 1980-x — koney 2010-x 2e. [loocomosiena cepus kapmocxem, NPOCMPAHCMEEHHO XAPAK-
mepusyrowux npouzoweouue usmernenus. C ucnonwb3osanuem cpeocms eouHGoOpMayuoHHO20 aHAIU3A Gbl-
NONHEHA OYEeHKA 00U HAPYULEHHBIX JIECHBIX IKOCUCTEM 8 KANCOOM adMuHucmpamusHom patione beneopoo-
ckoul obnacmu. B 6onvuwuncmee pailonog npou3owiio CHudiCeHue OO0NU HAPYULeHHBIX JeCHbIX YYACMKOS.
Yemanoeneno, umo 6 uccnedyemviii hepuoo 0051 HAPYUIEHHBIX JIECHbIX yuacmkos Ha 1o2e Cpeonepycckoil
6036blUEHHOCTNY DbLIA CPAGHUMENbHO Hegenuka u cocmasuna 1,84 % om obwel niowaou AUCmMEeHHbIx
necos 6 cepedune 1980-x — konye 1990-x ee. u 0,85% 6 nepuoo 2000-2017 ze.

Knrouesvle cnosa: necnvie sxocucmemvl, 1eCOCmenb, HAPYULEHHOCHb J1eC08, 2e0UHPOPMAYUOHHOE
Kapmoepaguposanue, cnymuuxosvie dannvie, Landsat

ASSESSMENT OF CHANGES IN THE FOREST OF CENTRAL RUSSIAN UPLAND
USING REMOTE SENSING DATA

E.A. Terekhin
Belgorod State National Research University

The assessment of changes in forests caused by the influence of negative factors is one of the key objec-
tives of forest monitoring. The article presents a new approach to automated mapping of forest areas with
disturbed stands. The method is based on the estimation of changes in the heights of forest stands using a
spectral response. The research was carried out using forest areas in the south of the Central Russian Up-
land, in the Belgorod Region. In order to assess the heights of the stand, it was proposed to use a logistic
model that describes the dependence of the SWIR range spectral response on the height of the forest stand.
In order to improve the accuracy of estimating stand heights, it was proposed to use the types of models
that use spectral characteristics from specific satellite sensors. The criterion for identifying areas of dis-
turbance in the stand is a significant decrease in the height of forest stands, occurring as a result of nega-
tive factors impact. The regional features of forests and shadowed areas on steep slopes can be considered
to be the major limitations of the method. The proposed approach enabled the authors to carry out geoin-
formation mapping of the changes in the forests in the south of the Central Russian Upland over the period
from the mid-1980s to the end of 2010s. Schematic maps characterizing the occurring changes have been
prepared. Using geoinformation analysis, the share of disturbed forest ecosystems in each administrative
district of the Belgorod Region has been estimated. In many districts, the share of disturbed forest ecosys-
tems has decreased. During the reference period the share of disturbed forest areas in the south of the Cen-
tral Russian Upland was relatively small. It was 1.84% of the total deciduous forest area in the mid-1980s -
late 1990s and 0.85% in the period 2000-2017.

Key words: forest ecosystems, forest-steppe, forest disturbance, GIS-mapping, satellite data, Landsat
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BBenenne. OueHka U3MEHEHUH B Jiecax, 00yCIOBICHHBIX BO3JACHCTBHEM HEraTUBHBIX (PaKTO-
POB, SIBJISETCS KIIOYEBOM 3aa4ei MOHUTOPHUHIA IOKPBITHIX JIECOM 3€Mellb. B 3HaUUTENBHON CTe-
MIEHH OHA CBS3aHA C MPOCTPAHCTBEHHO-BPEMEHHBIM aHAIM30M M3MEHEHUH B Jiecax, 00YCIIOBIICH-
HBIX BJIMSHUEM CIUIOUIHBIX PYOOK, IOXKapoB, HACEKOMbIX-BpenuTeneil. B cBs3u ¢ 3TuM akTyanb-
HOCTb MPUOOpPETAOT pa3padoTKa M COBEPIIEHCTBOBAHUE MOAXOJ0B K BBISIBICHUIO TAKUX U3MEHE-
HUH, YTO BO MHOI'OM CBSI3aHO C UCIIOJIb30BaHUEM BO3MOXKHOCTEH JAHHBIX TUCTAHLIMOHHOTO 30H/11-
poBaHus 3emyid. DTO HaIPaBJICHHE JAOCTATOYHO MHTEHCUBHO Pa3BMBAETCS B HACTOsAIIEE BpeMd,
YTO BO MHOIOM OOYCJIOBJIECHO MOBBIIIEHUEM JOCTYIHOCTH MaT€pHajIOB Pa3HOBPEMEHHOMN CITyTHU-
KOBOH ChEMKHU U pa3BUTHEM TexHoJorui e€ o0padotku (Kypbanos u ap., 2014; Senf et al., 2017;
Novo-Fernandez, 2018; XoBparosuu u ap., 2019). Ha Texkymuii MOMEHT TpEATIOKEH Psil TOIXO-
JI0B K aBTOMAaTH3UPOBAHHOMY KapTOrpapUpOBaHUIO M3MEHEHUI B Jiecax Ha pa3HBIX TEPPUTOPH-
JIHBIX YPOBHSX: B IIEPBYIO ouepens riodansHoM u peruonanbHoM (Healey et al., 2005; Kennedy
et al., 2010; bapranes, Jlynsan, 2013; Kyp6anoB u ap., 2015; Potapov et al., 2015). CoBpemennbie
METO/bl BBIBICHUS HW3MEHEHHH HCHOJB3YIOT PA3JIMYHbIE aJTOPUTMBI: NPUMEHEHUE MOPOTrOBBIX
3HA4YEeHUH CIIEKTPaJIbHBIX IPU3HAKOB IIPU BBIJICIIEHUU UCCIIEAYEMBIX KJIACCOB 00BEKTOB, CETMEHTa-
LU0 N300pa’KeHHU, METOAbl MHAMKALMN Pa3IMuuil HA OCHOBE CpaBHEHHs Map Pa3HOBPEMEHHbBIX
CHMMKOB, METO/Ibl CTATUCTUYECKOTO OIPEeNICHHs TPaHMUL, BKIIIOYasi METO/Ibl MHOTOMEpPHOIO aHa-
7132, UCTOJIb30BaHUE MOJIEIIEH pEerpeccuu.

Tem He MeHee, JaHHAs TPOOIIeMa OCTaETCs BO MHOTOM OTKPBITOM B CBSI3U C PErHOHATLHBIMU U
JIOKaJIbHBIMU 0COOEHHOCTSIMH JIECHBIX 9KOCHCTEM, O0YCIIOBICHHBIMU MTOPOTHBIM COCTAaBOM, (heHO-
(dazamu, a TakKe ¢ MOSBICHUEM HOBBIX THUIIOB CITYTHUKOBBIX NaHHBIX (Banskota et al., 2014; Zhu,
2017). DddexTrBHOE aBTOMATU3UPOBAHHOE KapTOrpadgupoBaHne N3MEHEHUH B Jiecax Ha CyOperu-
OHAJIbHOM W JIOKAJIBHOM YpPOBHSX OOyCIaBJIMBaeT HEOOXOAMMOCTb pPa3pabOTKH PETHOHAIBHO
aJlalITHPOBAHHBIX MTOAXO0I0B K aBTOMaTU3UPOBAaHHOMY OIIPEAEIEHUIO XapaKTEPUCTHK JIECHBIX Mac-
CHUBOB M U3MEHEHMH, IPOUCXOASIINX B HUX.

ITostBNIeHNE pEryisipHO MOJIy4aeMbIX MHOTO30HAJIbHBIX CHUMKOB BBICOKOTO PaJUOMETPHYECKO-
rO pa3pelleHus, B epByto odepenb, Landsat-8, mo3Bosmio Ha HOBOM YpOBHE MOJOWTH K Mpooiie-
M€ KOJINYECTBEHHOI'O aHalln3a OMOMETPUYECKUX MapaMeTpPOB JIECHBIX IKOCHCTEM Ha OCHOBE HX
CIEKTPaIbHO-OTPaXKATEIbHBIX MPU3HAKOB. O0YCIOBIECHO 3TO 00JIee BEHICOKUMU MH(OPMAIIHOHHBI-
MU BO3MOKHOCTsIMU JaHHBIX Landsat OLI mo cpaBHEeHHIO C CeHCOpaMu TPEABIAYIIEro MOKOJICHUS.

Ha Tepputopun rora CpenHepycckoil BO3BBIIIEHHOCTH, OXBaThliBaromiero benropoackyio o6-
JIaCTh U PACHOJIOKEHHOT0 MPEUMYIIECTBEHHO B 30HE JIECOCTENH, IPE00IaaatoT JECHbIE HacaX/ie-
HUS JJUCTBEHHOI'O NMOPOAHOro cocTaBa. OCHOBHAsS 4acThb JIECOB OTHECEHA K KaTETOPUU BOJOOXPaH-
HBIX U 3alIUTHBIX, UTPAIOIINX BAXKHOE 3KOJOTNYECKOE 3HAYeHHE. BOIBIIMHCTBO JIECOB OTHOCUTCS
K HaropHeIM JyOpaBam. BerencTBue JUIMTENBHOTO arpapHOrO0 OCBOEHHS B MPOLIEIIINE CTOJETHUS
IJIOLIA/Ib 3€MEIb, TOKPBITHIX JIECOM, 3HAUUTENBHO COKPATUIIACh U B HACTOSIIEE BpeMs Jieca IIpel-
CTaBJICHBI MPEUMYIECTBEHHO OTIEILHBIMU CPABHUTENBHO HEOOJBIIMMHU JIECHBIMH MAaCCHBAMH.
[TokpbITEIE JIECOM 3€MJIM XapaKTEPU3YIOTCS BBICOKOH (parMeHTHPOBAHHOCTHIO (YKpaMHCKUN U
ap., 2017). Bmecte ¢ 3TUM B mocieaHUE AECATHIICTUS B pETHOHE HAOII01at0TCS TCHICHIINH YBEIH-
yenus necucrtoctu (Tepexun, Uennes, 2018).

Lesab uccaeqoBaHus COCTOSINIa B OLIEHKE U3MEHEHHUH B JIMCTBEHHBIX Jiecax tora CpenHe-
PYCCKOM BO3BBIIIEHHOCTH (Tepputopusi benropoackoit o6mact), 00yCIOBICHHBIX BO3/IEHCTBHEM
Hapymarmux (HakTopoB, pa3paboTKe HOBBIX MOJX0JI0B K aBTOMAaTU3UPOBAaHHOMY KapTorpadupo-
BaHUIO YYaCTKOB HAPYIICHHBIX JIECOB HA OCHOBE KOJMUYECTBEHHOT'O aHajH3a OMOMETPUUYECKUX Ia-
paMETPOB JIECHBIX MAacCUBOB U MX CHEKTPAJIBHOIO OTKIMKA. AHAJIU3UPYEMbIM BPEMEHHOW MHTEP-
BaJI BKJIo4a nepuon ¢ cepeaunsl 1980-x nmo xonen 2010-x rr.
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3agayamu rucciei0BaHUs SABISAINUCH:

1. ABTOMaTH3MpOBaHHOE KapTOrpadupoBaHUE W3MEHEHUH B jiecaxX, 00yCIOBICHHBIX yXY/IIe-
HUEM COCTOSIHUS IPEBOCTOS, Ha tore CpeHEpyCCKOM BO3BBIIIEHHOCTH B NepuoJ cepeauHbl 1980-
X — KOH. 2010-x rT.

2. IIpocTpaHCTBEHHO-BpPEMEHHAs OLICHKA YYaCTKOB HApYUICHHBIX JIECHBIX YKOCHUCTEM.

3. OueHka oM HapYIIEHHBIX JIECOB OT OOIIEH MIIOMIAAH JIECHBIX MACCHUBOB B IpeIeax aaMHU-
HUCTPATUBHBIX paiiloHOB benropoackoi odmacTy.

Marepuaibl, 00beKT M MeTOAbl HcciaeqoBaHusi. OOBEKTOM HCCIEAOBAHUS BBICTYHAIH
JUCTBEHHbIE Jeca benropoackoi obnactu (puc. 1), cymmaproil miomanso 212651, 1 ra npu
cpenneit momanu 73,9 ra.
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Puc. 1. MecTomnoJioxeHue TePPUTOPHUU HCCIIeT0OBAHUS

UccnenoBanue oxBatbiBaigo 2875 JIECHBIX MAaCCHBOB PETHOHA, YTO COCTABIISET IMOIABIISIFOITYIO
4acTh JIMCTBEHHBIX JiecoB benropoackoi obmactu. JIjis aBTOMaTU3UPOBAHHOTO BBISIBJICHUSI U3MeE-
HEHMH B Jiecax ObLI MPeIIokKeH HOBBIM MOJIX0/, OCHOBAHHBIA Ha KOJIMYECTBEHHOM aHaiMu3e OHo-
METPUUYECKUX MapaMEeTPOB JIECHBIX HACAKICHHUM C MCIIOJIIb30BAHMEM HX CIEKTPAJIbHOTO OTKJIUKA.
OH 3aKt04aeTcsl B BBIABIECHUHU YYacTKOB JIECOB C HApYLIEHHBIM JPEBOCTOEM HAa OCHOBE OLIEHKH
MU3MEHEHUH B BBICOTAX JIECHBIX HACAKJIEHUH, KOTOPHIE B CBOK OUEPE]Ib U3MEPSIOTCA Ha OCHOBE UX
K03 (HULNEHTOB CHEeKTpalbHOU sipkocTH. OIeHKa CHEeKTPaJbHO-OTPaXKaTeNIbHBIX CBOWCTB Oblia
OCYIIIECTBJIEHA HA OCHOBE Pa3HOBPEMEHHBIX KocMuuecknx cHMUMKOB Landsat TM, ETM+, OLI,
MOJy4YeHHBIX ¢ cepennubl 1980-x rr. nmo koner 2010-x rr.

Cuumku cepun Landsat sBistOTCSI MPaKTUYECKU €AMHCTBEHHBIM THUIIOM CITYTHUKOBBIX JIaHHBIX,
MO3BOJISIIOIIMX TPOBECTH JaHHOE HCCle[OoBaHUE Onarofaps JIMHHOMY MEpUOAY CITyTHHKOBOM
CbEMKH M BO3MOXHOCTH (POPMHPOBAHUS TOJHOTO MOKPBITUS M300pakeHUIl Ha BCIO 00JacTh Ha
KOHKPETHBIE CPOKHU.

B pamkax panee npoenéHubix padot (Tepexun, 2012) ycraHOBIE€HO, YTO BO3PACT M BBICOTA
JIECHBIX HACAKJACHUH OKAa3bIBAIOT CTATUCTHUYECKH 3HAUYMMOE BIHMSHHE Ha KOI()(UIMEHTHI CIieK-
tpanbHO# sipkoctu (KCS) necHbix skocucteM. Hanbonee 4yBCTBUTEIBHBIME K U3MEHEHHUSM B BO3-
pacTe U BBICOTE JIECHBIX HACaXACHUN SBIIAIOTCS KOIPPUIMEHTHI OTpaKeHUsSI HHPPAKPACHOM 30HbBI
cnekrtpa (1,55-1,75 mxm) — SWIR-nnama3on, cooTBeTCcTBYIOMUN KaHany 5 ceHcopoB Landsat TM,
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ETM+ u kanany 6 cencopa Landsat OLIL. 3aBucuMOCTh MEXy UCCIEAYEMBIMH MTOKA3aTEISIMU MO-
JKET OBITh MCIIOJB30BaHa JJIS KOJIMYCCTBCHHOM OICHKHM BBICOTHI JICCHBIX HACAXKJICHUN HA OCHOBE
UX CIEKTPAIbHOTO OTKJIMKA. [l0oBBIlIEHHE BBICOT JIECHBIX HACAXICHUM SIBIISIETCS CIIEICTBUEM HOP-
MaJIbHOTO Pa3BUTHS JIECHBIX MacCUBOB. COOTBETCTBEHHO YYACTKH UX PE3KOI0 CHUKECHUS SIBIISIOT-
Csl CTICACTBUEM BO3ACHCTBHUS HapyIIaronuX (GakTOpOB, HAIIPUMED, CIUIOMIHBIX PyOoK. OIeHKa BbI-
COTHI B CBOIO OUYE€pe/Ib MOXKET OBITh MPOBEJEHA HA OCHOBE KOA(D(MHUIIMEHTOB CIIEKTPAIBHOU SPKO-
CTH, OCTATOYHO TECHO KOPPEIUPYIOIIHNX C HEM.

Jl71s1 OLIEHKH BBICOTHI JIECHBIX HACAXJIECHUM UCMOJIb30BaHA MPEIJI0KEHHAS 3aBUCUMOCTh MEXIY
BBICOTOH JIPEBOCTOS U €ro Kod(huimenTamu crekTpaibHoi sspkoctn SWIR-nuanazona. Ona nme-
€T BUJ JJOTUCTHYECKON KPUBOH U MOTYYCHA HA OCHOBE (DAKTUYECKHX JAHHBIX O XapaKTePUCTHKAX
BBICOT JIECHBIX HACAXKJEHUM, TUIMUYHBIX ISl PETUOHA, U COOTBETCTBYIOMUX UM 3HaueHud KCH,
M3MEpPEHHBIX Ha OCHOBE aBI'yCTOBCKMX CHMMKOB Landsat. [[jisi OBBIICHUS TOYHOCTH TIPOBOJIH-
MBbIX BBIUHCIICHUI MCIIOJb30BaJIM JIBa BUIA 3aBUCUMOCTH. [IepBbIid — ITOTy4YEHHBIN HA OCHOBE JaH-
Hbix Landsat TM/ETM+, BTOpoii — Ha ocHOBe nanHbIX Landsat OLI.

Ha ocuoBe caumioB Landsat ETM+ ona umeer Bug

27,8 !
(1 + e—90,045x)190788,0 ’ ( )

y=28-

rle y — 3HAYeHHUs BBICOT, X — 3HauYeHHs Kod(dduimeHtoB crnekTpaiabHou sipkoctu SWIRI-
nuanasoHna (5-i kanan cencopa Landsat TM/ETM+).

Ha ocnoBe nannbix Landsat OLI ona umeet crenyroiiye napaMeTpsbl:
278

y=28- (1+ ¢ 923662760 - (2)

rle y — 3HAYeHHUs BBICOT, X — 3HauYeHHs Kod(dduimeHToB crnekTpaiabHOU sipkoctu SWIRI-
nuana3ona (6-i kanan cencopa Landsat OLI).

KoadduimeHnTs! ciekTpaibHOM SIPKOCTH, HCIONb3yeMble B ypaBHEHUSIX 1 U 2, sBIsOTCS Oe3-
pa3MEepHBIMU BEIMYMHAMU, IPUHUMAIOIIMMU 3HaYeHUs B quarna3one oT 0 1o 1. OHu paccyuTaHbl
Ha OCHOBE aTMOC(EPHO U PATUOMETPUIECKH CKOPPEKTUPOBAHHBIX CITYTHHUKOBBIX CHUMKOB.

KaprorpadupoBanue BbICOTHI JIECHBIX HACAXICHHUI OBLIO BBHIITOJIHEHO HA TPH BPEMEHHBIX Cpe-
3a: cepeauna 1980-x rr., Hauano 2000-x, koner; 2010-x rr. Ha xaxapiii u3 HUX ObUIO chopMupo-
BaHO TOJHOE MOKPHITHE TeppuTOpHH benropockoii o6mactu caumkamu Landsat, mosydeHHbBIMU B
MIepPHOJ] aBryCTa, SBISIONIErOCcs HauMeHee 0e3001aunbIMu MecsitieM (Tabma. 1). PactpoBeie Momenu
BBICOT JIECHBIX HacaxJAeHUM Ha nepuoabl cepeaunbl 1980-x n navana 2000-X rr. BBIUKCISAIN Ha
ocHoBe ypaBHeHUs (1), pactpsl BeicoT Ha 2017-2018 rT. — Ha OcHOBE ypaBHEHHS (2).

Tabumma 1
CnyrHukoBble faHHble Landsat, ncnosnb3yemble 111 OLEHKH BHICOT HACAMKAEHUI 1 aBTOMATH3UPOBAHHOIO
kaprorpadupoBaHusi U3MEeHeHHUIi B Jiecax Ha 0re CpeaHepyccKoi BO3BbIIIEHHOCTH

[Tepuoa cb€MKHM 1 AaTHI MOTYUYEHUSI CHUMKOB
Path/Row 1980-c rr. 2000-c 1. 2010-c 1.
178/025 07.08.1986 13.08.2000 31.08.2018
177/025 29.08.1985 22.08.2000 24.08.2018
177/024 29.08.1985 22.08.2000 24.08.2018
176/025 28.08.1987 10.08.2001 14.08.2017

Bce canmku Landsat mpornumm stan atmocdepHoi u paaunoMmerpudeckoi koppekiuu (Chander
et al., 2009; Landsat 8 Data Users Handbook, 2019). [{ns aBTOMaTu3upoBaHHOTO KapTorpapupo-
BaHHUS BBICOT JIECHBIX HACAXJICHUU M y4aCTKOB HApYIIEHHOCTH ObLI MCIOJB30BaH MpPEIBAPUTEIb-
HO TOATrOTOBJICHHBIM BEKTOPHBIM CJIOM BCEX JIMCTBEHHBIX JIECOB PErMOHA, CO3JAaHHBIM METOJAOM
PY4YHOI OIM(POBKHU JIECHBIX MAaCCUBOB Ha OCHOBe cHUMKOB Landsat. Ero mucrnonb3oBanue 1mo3Bo-
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JIWJIO TIPOBECTH aHAJIU3 CHEKTPAJIbHOIO OTKIIMKA B MpEAeaX KOHTYpPOB JIECHBIX YYacTKOB U Olie-
HUTHh OCOOCHHOCTHU IUHAMHUKH OTPAKATEIbHBIX CBOMCTB ISl KaXKI0TO U3 HUX.

[TomyyeHne sKcrepUMEHTAIBHBIX PE3yJbTAaTOB OBLIO MPOBEACHO B JBa 3Tama. Ha mepBom u3
HUX OCYILECTBWIN KapTorpapupoBaHKUE BBICOT JIECHBIX HACAKJICHUN Ha KaX/(blii BDEMEHHOM cpes.
Jnig sToro B nporpamme ArcGIS Obu1 HanucaH anropuTM, UCIOJIB3YIOUIUI Ha BXO/1€ CITYTHUKOBBIE
cuenbl Landsat kaxJ0ro BpeMEHHOTO Cpe3a U BEKTOPHYIO MacKy HUCCIEAYyEeMbIX JIECHBIX MACCHUBOB.
CymHocth anroputMa 3akiroyaercss B nepecuére 3HaueHuit KCS B 3HaueHHs BBICOT JIECHBIX
HaCaXAECHUH, pacTpbl KOTOPbIX (popMuUpyrOTCs Ha ero Beixoje. HecMoTps Ha omnpenenéHHble 1O-
IPEIIHOCTH M3MEPEeHHUil, 00yCIOBIEHHbIE BapUaIlel CIIEKTPaIbHBIX CBOMCTB JIECHBIX AKOCHUCTEM
Ha KOCMUYECKUX CHUMKAaX, JaHHBIM MOJXO0J TOCTATOYHO (PPEKTHBEH MpPU BHISBICHUH YYaCTKOB
CYIIECTBEHHBIX U3MEHEHUH (CHIKEHHIA) BBHICOT, OOYCIIOBJICHHBIX MOSIBIICHHEM apeaioB HapylIeH-
HOCTHU JipeBocTosl. Ha BTOpOM 3Tarne ¢ UCrosb30BaHUEM JPYTroro airopuTMa, TaKkke MOoAroTOBIIEH-
Horo B ArcGIS, Obuti BBIUMCIIEHBI PacTpPbl YUYAaCTKOB HAPYHICHHOCTH, UACHTHU(PHUKAIHMS KOTOPBIX
IIPOU3BOJMIIACH METOAOM OLICHKH M3MEHEHUS BBICOT HACaKJIEHUM B Ka)KIbli MCCIENYEMBIN Bpe-
MeHHOU uHTepBas: 1985-2000 rr. m 2000-2017 rr. K yyacTkaM U3MEHEHHUI B JPEBOCTOE B aBTOMa-
TUYECKOM PEKUME OTHOCHUIIM (hparMeHThl pacTpoOB, HA KOTOPBIX CHU)KEHUE BBICOT COCTaBIsLIO 12
M 1 0oJiee MeXy HaualbHON U KOHEYHOH aHaIu3upyeMoi naroil, Hanpumep, 1985 r. u 2000 r.

OmmbKu, CBS3aHHBIE C HCIOJIB30BAHUEM IPEIOKEHHOTO TTOAX0/1a, 00YCIOBICHBI CIICAYIONIH-
MU IPUYMHAMM: TEHSMHU OT JIECHBIX MAaCCHBOB, PACIOJIOKEHHBIX HAa OTHOCUTENIBHO KPYTBIX CKIIO-
HaX, ¥ HaJM4Me HEOOJBIIONW OOJIAYHOCTH Ha HEKOTOPHIX (pparMeHTax CIyTHUKOBBIX M300pake-
Huil. OHU OBUTH OTPEAAKTHPOBAHBI BPYYHYIO B IPOIECCE MPOBEPKHU MOITYUYECHHBIX PE3yIbTATOB H
UX CONOCTABJICHUS C Pa3HOBPEMEHHBIMU CITyTHUKOBBIMH JaHHBIMU Landsat, Ha KOTOPBIX y4acTKu
MU3MEHEHHUH B JIECax JOCTATOYHO BBIABIIAIOTCA IIPU BU3yallbHOM IpocMmoTtpe. Ilonydennsie marepu-
aJIbl TIO3BOJIMJIM CO3J1aTh KAapTOCXEMBI JIECOB C HAPYLICHUSMH APEBOCTOS, IIPOBECTH IPOCTPaH-
CTBEHHBIN aHAJIN3 U3MEHEHUH B JIECaXx.

Pe3yabTarsl. [IpuMeHeHne NpeaOKEHHOr0 METOAa MO3BOJIMUIO B aBTOMAaTU3UPOBAHHOM
peXHUMe MPOBECTU KapTorpapupoBaHUE YUYACTKOB HETaTUBHBIX M3MEHEHUH B Jiecax, MOSIBUBIIUXCS
B niepuo ¢ cepenunbl 1980-x mo kounerr 2010-x rr., uIsi TOIABISAIONICH YacTU JTMCTBEHHBIX JIEC-
HBIX HacaxaeHui benroposackoit oomactu (2785 necHpix MaccuBoB). CpaBHEHHE PE3yJIbTATOB aB-
TOMAaTU3MPOBAHHOTO KapTorpapupoBaHus ¢ (pakTHdecKMMU W3MEHeHHsiMH (puc. 2, 3) mokasalio,
9TO TPEUIONKCHHBIA TIOIX0J] MOXET OBITh JOCTAaTOYHO A(H(PEKTUBHO NMPUMEHEH IS BBISBICHHS
Y4aCTKOB JIECOB C HAPYIICHUSIMHU JPEBOCTOS.

22.08.2000 14.08.2017

Puc. 2. [IpumMep u3MeHeHHIT B IpeBOCTOE TUCTBEHHBIX JIecOB 10ra CpeHepyCcCKoi BO3BBIIIEHHOCTH
Ha cHuMkax Landsat B Hayane 2000-x rr. u B koHue 2010-x rr.

123



1980-e - 2000-e rT. 2000-e - 2010-e rT.

— SN

Puc. 3. [Ippumep aBTOMATH3HPOBAHHOTO AU (PPUPOBAHNUS YIACTKOB JECHBIX MACCHBOB ¢ HAPYIIEHHBIM
JapeBocToeM Ha 1ore CpeaHepyccKoii BO3BBILIEHHOCTH B Nepnoj ¢ cepequnbl 1980-x r. mo konen 2010-x rr.
1 — 1eca 6e3 HapywIeHHii ApeBoCTOs, 2 — HAPYLIEHHbIE Jeca

Haubosee 3¢ ¢exTuBHO €ro MCnosib30BaHUe NpU AeMU(PUPOBAHUN YYAaCTKOB HETATUBHBIX W3-
MEHEHUH CIIO)KHOU (hOPMBI, KOT/Ia pa3Mep Y4aCTKOB COIOCTaBUM C Pa3MepOM MUKCENIeH CHUMKA.
[IpenmymiecTBOM NOX0/1a SBIISETCS TAK)KE TO, YTO OH YYUTHIBACT PA3IMUMs B CIIEKTPAJIBHBIX Xa-
pakrepuctukax ceHcopoB Landsat TM u OLI, T.k. HCIIONIB3yeT pa3IeIbHYIO OIIEHKY BBICOT HACAXK-
JICHUHI Ha OCHOBE YPaBHEHWH, BBIYHCICHHBIX C YYETOM CIIEKTPAIbHO-OTPAKATEIBHBIX CBOWMCTB
CHUMKOB C Ka)XJIOTO CEHCOPa.

['maBHBIM OrpaHHYEHHEM HCIOIB3YEMOTO MOAXO0Ja SBISETCS €ro M3HayallbHas agamnTaius K
necaM CpeaHepYCCKOW BO3BBIIIEHHOCTH, B KOTOPBIX MPeoOIaJaroT JIMCTBEHHbIE TOPOABI: 1y0 U
sceHb. Ho 0IHOBpEMEHHO B 3TOM 3aKJIIOYAeTCs M €ro MpeUMYIIEeCTBO MpU KapTorpadupoBaHUU
U3MEHEHMH B Jiecax pernoHa. Kpome toro, 00s3aTeibHBIM yCIOBUEM HPEIJIOKEHHOTO METO/Ia SIB-
JSieTCs TOYHAS B3aUMHAs PUBSI3KA PAa3HOBPEMEHHBIX KOCMHUECKUX CHIMKOB

AHaIIN3 MOYYEHHBIX Pe3yIbTaTOB MO3BOJIII YCTAHOBUTH PSI/I TEHACHIIMA B M3MEHEHUH COCTO-
SIHUSI JIECHBIX MaccuBOB tora CpenHepyccKoi BO3BBIIIEHHOCTH. OCHOBHON OCOOEHHOCTBIO H3Me-
HEHHUSI COCTOSTHUS JIECOB JINCTBEHHOTO MTOPOTHOTO COCTaBa B epHol ¢ cepeannsbl 1980-x mo koHel
2010-x TT. SABISIETCS CHIKCHUE IUIOMAN YIAaCTKOB C HapyIICHUsIMH JIpeBocTosi. Heo6xoaumo oT-
METHTb, YTO BBISIBIEHHAs! OCOOCHHOCTh XapaKTepHa JUIsl TUCTBEHHBIX JIECOB U HE YUYUTHIBACT XBOMU-
HbIE (COCHOBBIE) Jieca pernoHa, KOTOpble He SBISUIMCh 0OBEKTOM HccieloBaHus. B 1enom Ha oc-
HOBE MOJIYYEHHBIX JTAHHBIX, IO PETHOHY B niepuos ¢ cepeannsnl 1980-x nmo konen 1990-x rr. gons
YYacTKOB C HAapyIIEHHBIM JPEBOCTOEM B JIMCTBEHHBIX Jecax cocraBuina 1,83 %. B nepuon 2000-
2017 rr. aToT nokazarenb Obl1 paBeH 0,85 %. B GonbmmHCTBE aAMUHUCTPATUBHBIX pailoHOB ber-
rOpoJICKOI 00JacTu B MCCIEAYEMBI MepuoJl MPOU30LUIO CHI)KEHHUE OJIM HAPYIICHHBIX JIECHBIX
y49acTKOB (puc. 4).

TakuMm 00pa3om, OCHOBHAsI 4acTh JMCTBEHHBIX JIECOB PErHMOHA B IMOCIIEIHUE JECATUIETUS Xa-
paKkTepr30BaIaCh OTHOCUTEIHLHO HEBBICOKOW JOJIEW HAPYIICHHOCTH IPEBOCTOS, OOYCIOBJICHHOU
BO3/IEHICTBUEM HETaTUBHBIX (PaKTOPOB.
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Puc. 4. I3MeHenne 10J1M HAPYIIEHHBIX JIECHBIX YYACTKOB OT 001eli NJI0IIaAH JeCHbIX MACCHBOB B palioHax
Bearopoackoii o01actu B nepuoj ¢ cepeaunnl 1980-x rr. mo konen 2010-x rr.: 1 — 10J151 HApYLIEHHBIX JIECHBIX
ydacTkoB B nnepuoa 1985-2000 rr., 2 — 10/11 HAPYIIEHHBIX JIECHBIX y4acTKOB B nepuon 2000-2017 rr.

BoiBoabl. [Ipennoxen cnocod aBTOMAaTU3UPOBAHHOTO BBISIBJICHUS HEraTUBHBIX H3MEHE-
HUH B JIECAaX, OCHOBAHHBIM HAa KOJIMYECTBEHHON OLICHKE BBICOT JIECHBIX HACAXKACHUM C UCIIOIb30Ba-
HUEM HX CIEKTPaJbHOIO OTKJIMKA. METOJ HCIONIb3yeT KOJUYECTBEHHYIO 3aBUCUMOCTb, ONHCHIBA-
IOLIYIO BIMSIHUE BBICOT JIECHBIX HAaCaXA€HUH Ha UX KO3 UIMEHTHI ceKTpaibHOM spkoctn SWIR
-nuana3zoHa. C MCIONb30BAHUEM IIPEIOKEHHOTO METO/1a BBIIIOJIHEHO aBTOMAaTU3MPOBAaHHOE Kap-
TorpaupoBaHue M3MEHEHUH B JIECHBIX MaccuBax kora CpeaHepycCKO BO3BBIINIEHHOCTH, 00Y-
CJIOBJIEHHBIX HapyIIEHUSMHU IPEBOCTOs, B epuos cepeanna 1980-x — xonen 2010-x rr. M3ydenst
IIPOCTPAHCTBEHHO-BPEMEHHBIE 0COOEHHOCTH MPOU3OIIEIIINX U3MEHEHUI.

Hccneoosanue epinonneno npu punancoeoil noooeprcke POOU ¢ pamkax nayunozo npoexkma Ne 18
-35-20018
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OIIEHKA 3APACTAHUSA CEJIbCKOXO3SMCTBEHHBIX 3EMEJIb IPEBECHBIMHA
IMOPOAAMMU IO CITY THUKOBBIM JAHHBIM LANDSAT HA ITIPUMEPE YYACTKA
BAKAJIMHCKOI'O PAUOHA PECITYBJIMKHN BAIIKOPTOCTAH

M.B. MaprtsinoBa, P.P. Cynranosa, A.K. ['abnenxakos, 3.3. Paxmarymun, I'.E. Onunios
bamkupckuii rocyaapCTBEHHBIN arpapHblii yHUBEPCUTET

Buinonnena oyenxa sapacmanus 3emeis, 8biuleOUUX U3 CEbCKOXO3AUCMBEHHO20 NONb308AHUSA, Opesec-
HOU pacCmumensHOCmbi0, OnpedesieHbl eé cocmas u 2yCmoma Ha OCHOBe NOEBbIX UCCIe008aHUl, A MaKice
C UCNONb308AHUEM PA3HOBPEMEHHbIX CHUMKO8 Landsat 5,8 nymém pacuéma eecemayuonnozo unoexca AR-
VI Obvexm uccredoganus — 3eMenbHulil y4acmox, pacnonodicennsiii 6 ¢. Haeaiibaxoso baxanunckoeo paii-
ona Pecnybauxu Bawxopmocman. [lpu nomowu ouckpemuoii wixkanwl 3uavenutl unoexca ARVI mpassinou
NOKPO8 U OpesecHasi pacmumenrbHOCmb ObLIU OMOEeHbl OM YUACMKO8 ¢ OmMKpulmot nousou. Komounayuu
CHeKmpanvhblx Kananos 5, 4, 3 ona chumxos co cnymuuka Landsat 8 u xkananos 4, 3, 2 01 cHUMKO8 co
cnymuuxa Landsat 5 nozgonsarom onpedenums Hanuyue OpesecHol pacmumenrbHOCHU Ha 3eMISX CelbCKOXO0-
3aticmeennozo Haznawenus. Ha yuacmke 3apacmanusa npucymcmeyem 2yCmas mpasaHucmas pacmumens-
Hocmb ¢ undekcom ARVI om 0,2 0o 0,3. Ha cuumxax 2001 u 2019 ee. npossnsiomcs y4acmyu ¢ npucym-
cmsuem depesves, unoexc ARVI komopwix Haxooumcsa 6 ouanazone 0,3-0,9. Omkpvimobie no4gvl ¢ UHOEK-
com ARVI om 0 0o 0,2 na chumkax Landsat umerom mémHo-Kopuunesylo okpacky. Ycemanosneno, umo nio-
wWaowb 3apacmanus OpesecHbIMU HOPOOAMU CeNbCKOXO3AUCMEEHHO20 yuacmKka cocmagidem 2,5 ea. Budosoii
COCMAs U 2yCcmoma u3yiaemoz0 HAcCAICOeHuUs onpeodenenvl KOMOUHayuel 21a30MepHO20 U UHCTNPYMeH-
MAnbHO20 Memo008 1ecHoU maxkcayuu. Mcnonb308aHue OCeHHUX CHUMKO8 (KOHeYy CeHmAOps - HAualo OK-
maops) s61semcs Hauboaee yOauHvlM peuleHuem 0l OnpedesieHust HOPOOHO20 COCMABA OPesecHoll pacmu-
menvHocmu. Mcnonb3ys Ouckpemmuyio wkany u noayyennviil unoexc ARVI, naxooswuiics ¢ ouanasoue 0,3-
0,9 05151 X60UHbBIX, NOYHAEM BO3MONCHOCHL NOOMBEPOUMb OAHHOE YMBEPAHCOCHUE.

Knrouesvie cnosa: nec, cenvbckoxossiicmeennvle 3emau, opegechas pacmumenvrocmes, Landsat, un-
oexc ARV, ][33, ArcGIS

ASSESSMENT OF REFORESTATION ON ABANDONED AGRICULTURAL LANDS
USING LANDSAT DATA ON THE EXAMPLE OF A SITE IN THE BAKALINSKY
REGION OF THE REPUBLIC BASHKORTOSTAN

M.V. Martynova, R.R. Sultanova, A.K. Gabdelkhakov, Z.Z. Rakhmatullin, G.E. Odintsov
Bashkir State Agrarian University

The paper assesses the lands excluded from agricultural use in terms of woody vegetation, composition
and density determined based on field studies, as well as using Landsat 5,8 multi-time images by calculat-
ing the vegetation index ARVI. The area under study is located near the village of Nagaybakovo in the Ba-
kalinsky district of the Republic of Bashkortostan. Grass cover and woody vegetation were differentiated
from open soil areas using a discrete scale of ARVI values. The combinations of spectral channels 5, 4, 3
for Landsat 8 satellite images and channels 4, 3, 2 for Landsat 5 satellite images make it possible to detect
woody vegetation on agricultural lands. The overgrown area has dense grassy vegetation with an ARVI
index from 0.2 to 0.3. In the images obtained in 2001 and 2019 there are spots with the presence of trees,
and the ARVI index ranges between 0.3 and 0.9. Open soil area with an ARVI index ranging from 0 to 0.2
in Landsat images is characterized by dark brown color. In the course of research it has been found out
that the agricultural area overgrown with tree species accounts to 2.5 hectares. The species composition
and the density of the area under study are determined by a combination of visual and instrumental meth-
ods of forest inventory. Using the autumn images (late September - early October) is best for determining
species composition of woody vegetation. Using a discrete scale and the resulting ARVI index ranging from
0.3 to 0.9 for conifers proves this assumption.

Keywords: forest, agricultural land, woody vegetation, Landsat, ARVI index, remote sensing, ArcGIS

BBenenue. Jl;is1 BTOpOi moaoBuHBI XX B. OBIJIO XapaKTEPHO TO, 4YTO MOYTH B 80 cTpaHax
MHUpa HaOII01a710Ch CTA0MIIBHOE YMEHBILEHHE 3eMENb CElNbCKOX03AHCTBEHHOTO Ha3HayeHus. [lo-
YTH 32 COPOK JIET U3 000poTa ObUIO BHIBEACHO 223 MITH ra CEIbCKOXO035MCTBEHHBIX yroauii. Beuny
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COLIMATIbHO-D)KOHOMHUYECKUX MPeoOpa3oBaHmii, KOTOpPhIE MPUILTKUCEH Ha Tiepuoa 1990-x ronos, Poc-
CHsl TAKXKe MOTEpsuIa OKOJIO 58,3 MIIH ra CeabCKOXO3IUCTBEHHBIX yroauil. Takxke CylecTBEeHHbIE
MOTEPU CEINbCKOXO3HCTBEHHBIX 3eMelNb HaOmonamich B Apcrpanmu (40,8 mua ra), CIHA (35,6
MJH Ta) 1 3anaanoi EBpone (25,1 M ra) (ATposKoiorudeckoe coctosiHue. .., 2008).

Ecnm sxe oOpaTuThes K cOBpeMeHHON uctopuu, To B nepuona ¢ 2010 mo 2018 r. obmas mio-
ab 3eMelb CEeJIbCKOXO03SHUCTBEHHOro Ha3HaueHUs B Poccuiickoit @enepaliy cOKpaTHiach Ha
17,5 man ra. CornacHo aaHHbIM Pocpeectpa, Tosibko B 2018 roay opranamu rocyaapCTBEHHOM
Bractu Poccuiickoit deneparuu, cyobekToB Poccuiickoit denepanyu U1 opraHaMyd MECTHOTO ca-
MOYIIPABIICHUSI U3 3€MEIb CEIbCKOXO03SMCTBEHHOTO Ha3HaueHust 770,3 Teic. ra, B ToM uucie 647,8
TBIC. Ta OBUIO TEPEeBEICHO B 3eMJIM JiecHOTo (onaa (Jlokiam o COCTOSHUU M UCIOJIB30BAHUU 3€-
MeTb..., 2020).

Bompockl nepeBoia 3emenb CENbCKOXO3SIMICTBEHHOIO Ha3HAYEHUS IOJ JIPYrHe BUABI 3eMJle-
I0JIb30BAHUS TaK)K€ HAXOJAT CBOE OTpaK€HHE B 3apyOexHBIX HccienaoBaHusx. B peruone Tpen-
THUHO, KOTOPBII PacIoyioKeH B BOCTOUHOM yacTH AJbll Ha Tepputopuu MTanuu, Takoe uccienoBa-
HHe OBLJIO TIPOBEJICHO B JIBa 3Tama ¢ MCMoJjb30BaHueM opTodorocHUMKOB 1973 1 1999 rogos (De
Natale et al., 2007). Ha ux ocHOoBe Oblia mpoBeZeHA OLIEHKA IJIOL[AJA1 HOBBIX JIECHBIX MaCCHUBOB,
MPOaHATM3UPOBAHBI UX KOJOTHYEcKHe U JaHamadTHeie ocooeHHOCTH. Bo @panuuu JOMUHUPY-
FOLIEN IPEBECHOM MTOPOJIOK, 3apacTarolIed Ha 3eMIISIX CEJIbCKOX035IMCTBEHHOIO Ha3HAYEHUS, SIBIIS-
ercs sicenb (Sheeren et al., 2011). TouHOCTB €ro pacro3HaBaHUs HA CYTHUKOBBIX H300paKEHUSIX
Ha OCHOBE METOJa OMOPHBIX BEKTOpOB coctaBuia 6osiee 90 % . B BoctouHoit yactu bantuiickoit
TEPPUTOPUHN COCTAB JAPEBOCTOEB, 3apaCTAIOUINX HA CEJIbCKOXO3SIMCTBEHHBIX MOJSAX, U3MEHMIICS C
JMCTBEHHBIX MOPOJ HA ellb eBporeicKyto (Picea abies), 4To 0OBSICHACTCS OJIATONPUATHON BIIAXK-
HOCTBIO MOYBBI U Pa3BUTHEM IIJIOTHOTO TpaBsHOTo nokposa (Risina et al., 2020).

B nacrosiee Bpems B Pecybnuke bamkoprocran HaOmromaercst Takas xke cutyarus. OKomino
JIECSITKOB THICAY TeKTap 3a0pOIIEHHBIX CENIbCKOXO03SHCTBEHHBIX YIOJUi, KOTOPBIE HA MPOTKEHUN
6onee 10 ser He MoOJBEprajuch pacralike, CCHOKOICHHUIO U BBIIIACY CKOTA, 3apacTatoT JIPEBECHOM
pacturensHOCThIO (I"ocynapcTBeHHbIi Aokna..., 2020). [IpuurHaMu TakoW TEHIEHIIUH SBIISETCS
HEHCIIOJIb30BaHUE CEJIbCKOXO3AHCTBEHHBIX 3€MEJb 110 HAa3HAYEHUIO U Oe37eHCTBUE CO CTOPOHBI
npaBooOagaTeNeld 3eMeIbHbIX YYaCTKOB, CONPSIKEHHOE C HECOOII0IEHUEM 00s3aTeIbHBIX TPEOO-
BaHUU M MEPONPUATHIA 1O 3alIUTE 3eMeNb OT 3apacTaHus. Mexay Tem B Pecnybnuke bamkopro-
CTaH, B OTJIMYUE OT IPYIMX PETHOHOB, IPAKTUYECKH OTCYTCTBYIOT UCCIIEIOBaHUS, pacCMaTpUBalo-
e qaHuyo npobiemy. B Pecniybnuke Mapuit O pe3ynbTaTsl HCCIEOBAHUS HA 3TY TEMY MTOKa-
3aly, 4TO Ha 3eMJIIX OBIBIIUX CEJIbCKOXO3AMCTBEHHBIX YrOJUN MPOUCXOTUT POCT U (POpMHUpPOBa-
HUE BBICOKOIPOAYKTHBHBIX 0epE&30BbIX U cOCHOBBIX HacaxkaeHuit (Kypbanos u ap., 2010a, Kypoa-
HOB U JIp., 20106). DddexT oT nepeBosia TaKUX 3eMeNb B JIECHOH, OJTHO3HAYHO, OyJeT UMETh TO-
TOXKUTENbHBIN 3(PQEeKT, YTO TakkKe peraaMeHTHPYeTCs HOPMAaTHUBHO-TpaBoBbIMH akTamu (OO
o0ecreyeHnu IIoAopoans 3emenb..., 2014; OO0 yrBepxkaenun [IpaBun obecriedeHust coxpase-
Hus..., 2018). Tem He MeHee, BeileHNE JIECHOTO XO3SIMICTBA HA TAKMX YYaCTKaX BBI3BIBACT OMpEJIe-
néunsle TpyaHocty (Mopo3sos, Hukomnaesa, 2013). 31o 060CHOBaHHO Te€M, YTO 3apacTaHHE MPOUC-
XOJUT MOCTENEHHO, a €r0 CKOPOCTh 3aBUCHUT OT IUIOIIAIU 3a0pOIIEHHOT0 yyacTKa.

Kpome Toro, Takue ecrecTBEHHbIE IPOLECCH HA OBIBIIMX CEIbCKOXO3IMCTBEHHBIX 3€MIISIX MO-
I'YT NIPUBECTH K TOMY, YTO U 4Yepe3 HECKOJbKO JECATKOB JIET y4acTOK He OyAeT MOIHOCTHIO IO-
KPBIT JIPEBECHOM pPacTUTENBHOCThIO. B 3TOM cityuae He 00o0iTHCh 6€3 MpUMEHEHHs] TEXHOJIOTUI
HCKYCCTBEHHOT'O JIECOBO30OHOBIIEHUS, YTO B pe3yJIbTaTe MPUBEIET K CO3AAHUIO Pa3HOBO3PACTHOTO
HacaxaeHus. Bcé€ 3To cBUaETENbCTBYET 00 aKTyaJbHOCTH PacCMaTpUBAEMOro BOIIpOca JJIsl pec-
ny6snku bamkopTocTas.
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Ieabo padoThbl sBIsETCS OLIEHKA 3apacTaHMs CEIbCKOXO35MCTBEHHBIX 3€MENIb JpEBeEC-
HOM pacTUTENBbHOCTHIO, OIIPEEIEHNE €€ TIOPOIHOTO COCTaBa C UCIOIb30BAaHUEM PAa3HOBPEMEHHBIX
canMkoB Landsat u HaTypHBIX 00cnenoBanuit. [ nocTikeHus ey ObLUTH ITOCTAaBICHBI CIIAYIO-
LI1e 3a1a4u:

e T10700paTh Y4acCTOK C MCIIOJIb30BaHHEM Oa3bl JaHHBIX Landsat;

e IPOBECTM HATypHbIE 0OCIEIOBaHMSA HAa BBIOPAHHOM Yy4YacTKe MYTEM IJIAa30MEPHO-
U3MEPUTEIIBHOMN TaKCallWH;

e OLICHUTH CTENIEHb 3apacTaHUs UCCIENYEMOrO y4acTKa JPEBECHOM PaCTUTEIbHOCTBIO 110 pas3-
HOBPEMEHHBIM n300pakeHusiM Landsat B mporpammuoii cpene ArcGIS;

e CPaBHUTbH PE3YJbTAThI [TOJIyUEHHBIX HA3€MHBIX U CIIyTHUKOBBIX JAHHBIX, CAEIATh BHIBOBIL.

XapakTepucTuKka 00beKkTa ucciaenqoBanusa. OObEKT HCCIEAOBAHHS PACIOIO0XKEH Ha 3e-
MeIbHOM y4dacTke, npuHapiexkameM OO0 «HuBay, bakanuackoro paiona (ceno HaraitbakoBo)
Pecniy6nuku bamkoproctan (puc. 1).

Puc. 1. O0bekT uccaenoBanus (kapra SIHaexc)

MeTtoauka uccjef0BaHMI COCTOSUIA U3 JIBYX 3TaIlOB: MOJEBbIE U KamepaiabHble paboThl. [lo-
JIeBBIE MCCIIEJIOBAHMS Ha PAacCMaTPUBAEMOM YYacTKE NMPOBOAMIINCH B MEPUOJ C Masi MO OKTAOPH
2018 rona. Ilpu rmazoMepHO-U3MEPUTENHHON TaKCallMU ObUIO HCHOJIB30BAHO KOMOMHHMPOBAHUE
I7Ia30MEPHBIX U MHCTPYMEHTAJIbHBIX MeT010B. Ha mpoOHoil muiomaau Obu1 onpeaenéH NopoHbIH
COCTaB, Y CPETHUX YYETHBIX JE€PEBHEB 3aMEPEHBI BHICOTHI U TMAaMETphl Ha 1,3 M BBICOTHI.

Bo Bpems kamepasbHbIX paboT momoOpanbl uzobOpaxenus 3a 2001 (Landsat 5) u 2019 rr.
(Landsat 8), cienanHapie B CEHTSIOpEe—OKTAOpPE COOTBETCTBYIOIIETO Tofa. Bce cHUMKHM OBLITM aTMO-
chepno ckoppektupoBanbl B makere ArcGIS 10.5. Ilpm pacu€ére wunHmekca ARVI
(AtMocdepoycToiuMBBIA BereTallMOHHbIN MHAEKC — anen. Atmospherically Resistant Vegetation
Index) Ha wmccrmemyemyro mIomaab ObUT WCMOIB30BAaH IMMPOKANA WHCTPYMEHTAPHI MPOTpaMMBbI
ArcMap. 3HaueHusi JaHHBIX MHIEKCOB BapbHpyIOT OT -1 1o 1. OnpexneneHue BUIOBOIO COCTaBa
MIPOBE/ICHO TIOJEBBIM METOAOM BBHIY HEJOCTATOYHOTO pPAa3peIIeHUs] CHUMKOB CO CIyTHHKOB
Landsat.

Pesynbratsl uccnenoBanuii. IlepBelii aTan 00pabOTKM JaHHBIX CHUMKOB 3aKJII0YAJICS B UCIIOb-
30BaHMM KoMOMHaImu cnekTpanbHbix kaHajaoB NIR, Red u Green nnst onpeneneHust Hanu4us Ha
HCCIIeTyeMOM YYacTKe JPEBECHOW pacTUTENbHOCTU. B Tabn. 1 mpuBeneHa uHdopmaius o HazeM-
HOM MOKpPOBE, KOTOPYIO BO3MOXKHO M3BJI€Yb U3 KOMOMHAIIMK CHEKTpalbHbIX KaHamoB Landsat.
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Tabmuua 1
HNudopmanus, noxydaemasi npu komonHanum kanajaos (Kocrukosa, 2005)

KomOunamms crek- KomOuuanus
TpabHBIX KaHAJIOB CIHEKTPaIbHBIX
Iorenuunanbaas nHOPMAIHS O HA3EMHOM MTOKPOBE
Landsat KaHaJIOB
5 Landsat 8

CraHgapTHas KOMOMHAIMSl «HCKYCCTBEHHBIE LBETa». PacTHTENBHOCTB
oToOpakaeTcsi B OTTEHKAaX KPAacHOTrO, IOPOJCKasl 3aCTpOiKa — 3eJIeHO-
roxyOBIX, a IIBET MOYBBI BAPBUPYETCS] OT TEMHO- 0 CBETIIO- KOPUIHEBOTO.
JI€n, cHer n o6naka BHITIALAT OCIBIMHU WIIM CBETIIO-TONYOBIMU (JIEX M 00-
Jaka MO KpasM). XBOWHBIE Jieca OyAyT BHIVIAACTE Oojiee TEMHO-
KPAaCHBIMH HJIH JaK€ KOPUYHEBBIMH 110 CPAaBHEHHUIO C JHCTBEHHBIMH. JTa
4,3,2 5,4,3 KOMOMHAIMSI OY€Hb IOIMYJSIpHA M HCIIOJIB3YeTCs TJIaBHBIM 00pa3oM Juis
W3Y4YEHUS] COCTOSIHUSI PAaCTUTEIBHOTO MOKPOBA, MOHUTOPUHTA JIpEHaXa U
MOYBEHHON MO3aWKM, a TaKkXKe JUIsl W3y4eHHUs arpokyinbTyp. B memom
HACBILICHHbIE OTTEHKH KPAacHOIO SIBJISIOTCS WMHIMKATOPaMHU 310POBOI M
(MTH) MHUPOKOJIIMCTBCHHOW PacTUTEIHHOCTH, B TO BpeMs Kak Ooliee cBeT-
Jble  OTTCHKH  XapaKTepU3yIOT TPaBIHUCTYIO WM  pPEAKoJiechs/
KyCTapHHKOBYIO PaCTUTEIBbHOCTb.

[To pe3ynbTaTam CHHTE3WPOBaHUS KaHAIOB Landsat MoJIyduIuCh CIIEHBI HA UCCIISAYEeMBbIi yda-
CTOK 3a pa3Hble ToJIbI (puc. 2).

[To pe3ynpTaTam mpoBeaEHHON 00PabOTKH MOKHO OTMETHTH cliieayromee: Ha cauMke 2001 ro-
Jla TpeBeCHasi paCTUTEILHOCTh HAa UCCIIElyeMOM ydacTke He oOHapykeHa. Ha caumkax 2019 roga
JpEeBECHasl paCTUTEIBbHOCTh Ha UCCIIEyEMOM Y4aCTKe, COCTOSIIAs U3 XBOMHBIX U JINCTBEHHBIX IO-
pon, otrobpaxkaetcst 6osee 4€Tko. OO0 3TOM CBUAETENBCTBYET O0JIee TEMHBIN [IBET paCTUTEIBHOCTH,
PAacIoyIoKEHHOM MO KpasM 3apacTarollero yJactka (puc. 2).

[Tpu momoy AuCKpeTHOM 1mKanbl 3HaueHui nujaekca ARVI (puc. 3) Bo3MokHO u€TKo€ BbIjIE-
JICHHE PACTUTEIHHOIO MOKPOBA OT MPOYUX MPUPOAHBIX OOHEKTOB.

40 0 0.1 02 03 04 05 06 07 08 09 10
Puc. 3. Juckpernas mkaja unaekca ARVI

Kak BugHO M3 pucyHka 4, Ha y4acTKe 3apacTaHusi MPUCYTCTBYET T'ycTas TpaBSHUCTas PacTu-
TenbHOCTh ¢ uHjIekcoM ARVI ot 0,2 1o 0,3; Ha canmkax 2001 u 2019 rogoB nposiBISIOTCS y4acT-
KM C IPUCYTCTBUEM JIEPEBHEB, Ui MHJIEKC HaXomuTcs B mpoMexkyTkax 0,3-0,9. OTKpBIThIE TTOYBBI
c uaaexkcoM ARVI ot 0 10 0,2 nmMeroT TEMHO-KOPHUYHEBYIO OKPACKY.

ITo pesynpraram pacuéra maaekca ARVI MOXHO cienaTh BBIBOJ, YTO 3apacTarOIIMN y4aCTOK
(moseToBBIN TPEYTOJIBHUK) UMEET MPSIMOE MPOUCXOXKIECHNUE OT CTEHHI Jieca (KpacHasi JTUHUS), KO-
TOpasi TPaHUYHT C U3Y9a€MbIM YIaCTKOM.
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Puc. 4. Cuensl nuzyyaemoii Teppuropun no uagexkcy ARVI: a) 2001 r., 6) 2019 r.

Bropoii 3tann 00pabOTKH COCTOSIT B ONMpPEIENICHHH TTOPOIHOTO COCTaBa JIPEBECHOM pacTUTENb-
HOCTH, 3apacTamolieil Ha o0cieayeMoM ydacTke. [l 3Toro Obuia KCIOIb30BaHA KOMOMHAIIMS Ka-
HanoB Red, Green u Blue (Ta6m. 2).

Tabmuma 2
HNudpopmanus, nosrydyaemas npu komouHanuu kaHajaos Landsat (KocTukosa, 2005)
Komb6una KomGmra-
LU KaHa-
s KaHAJIOB WHpopmanus 0 Ha3eMHOM ITOKPOBE
noB Land-
sat 5 Landsat 8

KomOuHanums «ecTecTBeHHbIe LBETa». B 3TOH KOMOWHALIMKM HCIIOJIB3YIOTCSI KaHAJIbI
BUIUMOTO JMana3oHa, HO3TOMY OOBEKThI 3¢ MHOW IMOBEPXHOCTH BBITJISIAT TOXOKHUMHU
Ha TO, KaK OHM BOCHPHUHHUMAIOTCSI YEJIOBEYECKUM IJ1a30M. 310pOBasi paCTUTEILHOCTh
391 432 BBITIISATHT 3€Hé:.I{OI>'I,vy6paHHLIC TOJIsl — CBETIIBIMH, HE310POBAs PACTHTENBHOCTh — KO-

> > PUYHEBOH M XKENTOM, JOPOTH — CepbIMHU, OEperoBble TMHUN — OenéchiMu. DTa KOMOu-
Halus KaHAJOB JaeT BO3MOXKHOCTh aHAJIM3HPOBATH COCTOSHUE BOAHBIX OOBEKTOB H
IpouecChl CEAUMEHTAINNU, OLICHUBATH F.]'Iy6I/IHI:I. Taxoke HCIOJIB3YETCA I U3YUYCHUS
AHTPOIOTeHHBIX 00BHEKTOB.

[To pe3ynbraraM Takoro CMHTE3a KaHaJIOB MOJYYHJINCH CIEIYIOIINe CHUMKH (puc. 5):

N ¥

Puc. 5. Komounannu kanajgoB Red, Green u Blue caumkoB Landsat: a) 2001 r., 6) 2019 r.

[y ST e _ 3|
Ha pucynke 5 BugHO, 4TO CT€HA Jieca, KOoTopasd rpa- | o W;@J : e o
o Y e L e

HUYUT C HAIIUM MCXOJHBIM y4aCTKOM, UMEET CMENIaH- |
HBIA COCTaB, TO €CTh BCTPEYAIOTCH KAK JIMCTBEHHBIE, | b s ¢
TaK ¥ XBOWHBIE MOPOJBl. ITO MOKHO OTMETUTH IO TO- 'f
JKEJITEBIIEH JIMCTBE U 3€JIEHOM XBOE, UTO COOTHOCI/ITCH_-
C HaTYPHBIMHU HCCIIEIOBAHUAMM. [ MOATBEpKAECHUA
HaJIMYKsl XBOWHOM PACTUTENBHOCTH Ha IMPHUJIETAIOIIEM | .
JIECHOM MAacCCHUBE K 3apacTaloIIeMy Y4acTKY OBbLT TAKKe ]

00paboTaH CHUMOK, C/IeJIaHHbIN B stHBape (puc. 6).

Y . 1 =
Puc. 6. Unnexc ARVI Ha cHuMKe
Landsat (auBaps 2019)
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Jlyist ompeienieHus XBOWHOW pacTUTENBHOCTH OblIa MCIoNIb30BaHa Imkaia ARVI st cCHUMKOB,
CHIeNIaHHBIX B 3UMHHUE MecAlbl (puc. 7) (Bereranuonusie nHaeKchl. OCHOBBI, (POPMYIIBL. .. ).

3nauenue unaexkca ARVI mis storo yuactka cocrasiser 0,3— 3“ M A
0,9, uto sBigeTCAs MOATBEpKACHHEM (aKTa HAIUYHs JPEBECHO-
KYCTapHUKOBOW PaCTUTEIbHOCTH. 1.00

Omnpenenenye mIomany MPOBEAEHO C IOMOIILIO MHCTPYMEH- ( 90

- 100 %
toB «Ilepexnaccuduxamus» u «Tabnuua atpubyroB». CHUMOK, (.80 .90%
MoJy4YeHHBIM mpu pacuére uHaekca ARVI, noszBonun oraenuts 0.70 .80 %

IMKCENH, COAEPIKAIIME IPEBECHYI0 PACTHTEILHOCTh, OT ocTaib- 0.60 -70% MMNOTHOCTL
HBIX BHJIOB 3eMellb. 3Has IUIOMIAb OXHOIO TAKOro muKcens, mo- 0-50 -60% [TOKPbITHA

0.45 ., XBOWHbLIMH
JTy4YUIIM JaHHBIE 110 IJIOMAJH 3apacTaroIIEro y4acTKa. _ 0.40 - 50 :‘ NECAMMU

Ilpu onpeneneHuu BUAOBOTO COCTaBA M IYCTOTHI JAPEBECHOH o'ag ;z .//'
pPacTUTENILHOCTH, BBUAY HU3KOTO Pa3pelIeHUs] CHUMKOB CO CITYT- Y
HukoB Landsat, ObLITM MCIIONIB30BAHbI YCTOSBIIUECS METOMAbI, IPH- :z:'

MEHSIEMBbIE B JIECHOW TaKCaIUH.

[To uToram BHIMOTHEHHBIX PabOT OBLIO YCTAHOBIEHO, YTO ILIO- o;g’éﬁi{ggs
a/ib 3apacTaHus JPEBECHBIMU MOPOJIAMU CENbCKOXO035IICTBEHHO- PACTUTENBHOCTH
ro yuactka cocrasiser 2,5 ra. U3 aux 60 % cocraBiser cocHa nchTEBrE ﬂﬁgls

N g
0OBIKHOBEHHAsL, @ 40 % — IIMCTBEHHBIC TIOPOJIBI (B OCHOBHOM Oepe- 0.05 NIECA)

3a nosuciuad). [lonnora cocrasuna 0,6. 0.10

BeiBoabl. KomiuiekcHoe ucnonp3oBanue qanupix J[33 u THUC Puc. 7. Mupexe ARVI Ha cnumke
TEXHOJIOTUI II03BOJISIET TIPOBECTH OLICHKY 3apacTaHHs 3EMelb Landsat (spapr 2020)
CEJIbCKOXO35ICTBEHHOTO HA3HAYEHUS JPEBECHON paCTUTENIBHO-
cTbio. KoMOMHaMM crekTpanbHbIX KaHaioB 5, 4, 3 17 CHUMKOB
co cnyTHuka Landsat 8 u xanHanos 4, 3, 2 17151 CHUMKOB CO CITyTHH-
ka Landsat 5 naroT BO3MOXXHOCTb ONpENIeNUTh HAJTMUne IPEBECHOM
PacCTUTEIBLHOCTH Ha 3€MJISIX CEJIbCKOXO035HCTBEHHOIO Ha3HAYEHUSI.

AHaIM3 KOCMHYECKUX CHMMKOB IT0OKa3ajl, YTO HA MCCIEAYEMOM Yy4acTKe MPHUCYTCTBYET I'ycTast
TpaBSHUCTAs pacTUTENLHOCTH ¢ HAeKCcOM ARVI ot 0,2 10 0,3, /1u1st y4aCTKOB ¢ HATUYUEM JIpEBEC-
HOM pacTUTENbHOCTH WHAEKC HaxomutTcss B npomexyrtkax 0,3-0,9. Bosmoxnoctu ITUC-
TEXHOJIOTHI TIO3BOJIMIIM OTNPEACIIUTD IUIONIAIb 3apacTaHusi, KOTopas coctaBuia 2,5 ra. Bumooi
COCTaB U I'yCTOTa OBLJIM YCTAHOBJIEHBI C TOMOIIBIO HATYPHBIX UCCIIETOBAHUM.

The European Commission support for the production of this publication does not constitute an en-
dorsement of the contents which reflects the views only of the authors, and the Commission cannot be
held responsible for any use which may be made of the information contained therein.
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ESTIMATION OF URBAN ENVIRONMENT IN TAIPEI LIVING CIRCLE BASED
ON REMOTE SENSING ECOLOGICAL INDEX

Yibo Wang
Volga State Technological University

The development of urbanization affects the natural environment in many fields such as resources, econ-
omy, society, culture, and technology. With the continuous development of urbanization, the interference of
human activities has greatly changed the structure of the original land. This article takes Taipei Living Cir-
cle in the northern part of Taiwan Island as an example. Based on the Remote Sensing Ecological Index
(RSEI), the ecological quality of the ground objects from 1988 to 2019 was evaluated. The remote sensing
ecological index is divided into five grades and combined with the land use transfer matrix to analyze the
impact of land-use changes in the region on the ecology, so as to analyze and evaluate the ecological envi-
ronment changes in the study area. Research shows that from 1988 to 2019, the remote sensing ecological
index was 0.559, 0.571, 0.546, and 0.396 respectively. The areas with improved ecological quality are con-
centrated in high-altitude areas, in mountainous areas, while the areas with reduced ecological quality are
concentrated in the expansion of the city in the Taipei Life Circle. The process of transformation has a sig-
nificant impact on the ecological environment. From 1988 to 2019, areas with improved ecological quality
were concentrated in high-altitude areas in mountainous areas, and areas with reduced ecological quality
were concentrated in urban expansion. The forested areas exert significant influence on the quality of envi-
ronment. Reasonable protection and utilization of mountain forest resources play an important role in the
sustainable development of Taipei Living Circle.

Key words: urbanization, ecological quality, RSEI, sustainable development, Taipei Living Circle,
environmental change.

Introduction

Remote sensing technology has been widely used in the field of ecological environment and
has become an effective means of evaluating the regional ecological environment. Land use and
land cover changes are often used to explore the impact on the environment (Cooper et al., 2006).
The development of urbanization affects the natural environment in many fields such as resources,
economy, society, culture, and technology. With the development of human society and the rapid
expansion of the scale of cities, people's demand for land resources is increasing (Grimm et al.,
2008). The continuous development of urbanization and the interference of human activities have
greatly changed the structure of the original land (Jimenez et al., 2018), and have a certain impact
on the surrounding ecology. Sustainable urban development is used to coordinate the relationship
between people and nature, so as to achieve a relative balance between the various parts of society,
economy, and natural environment (Aminzadeh, Khansefid, 2010). In response to the continuous
acceleration of global urbanization, remote sensing is used to conduct multi-angle research into the
cities. The direct application of remote sensing data has been widely used in the urban thermal en-
vironment (Estoque et al., 2017, urban smog (Liu et al., 2017), urban green space (Vorobyev et al.,
2015). On this basis, the use of economic (McDonnell, MacGregor, 2016), lighting (Xu et al.,
2018) and other data directly reflect remote sensing research of the environment.

The formation and the development of ecosystem are affected by many factors, so the ecologi-
cal quality status needs to be described from multiple aspects. It is not objective to use only one or
two aspects of ecological factors to reflect changes in the ecological environment (Wei et al.,
2017). The Remote Sensing Ecological Index (RSEI) is completely based on remote sensing infor-
mation and integrates a variety of environmental factors including greenness, humidity, heat, and
dryness (Xu, 2013). This index is comparable with traditional ecological quality index calcula-
tions. Since the data is obtained entirely through remote sensing, the difficulty of data collection is
greatly reduced. Data can also be visualized to facilitate comparison between different periods.
The principal component analysis method is used to assign weights, thereby improving the objec-
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tivity of the evaluation results. And it has been better used in urban (Yang et al., 2019), desert
(Jiang et al., 2019), wetland (Wen et al., 2020), and other settings. Combined with the actual situa-
tion of Taiwan Island, RSEI, land use and land cover changes, it is possible to understand the im-
pact of different types of ground features on environmental quality.

Joining the land-use change and remote sensing ecological index in the Metropolitan Taipei in
the northern part of Taiwan Island, China from 1988 to 2019, we analyzed the impact of the
changes on the ecological environment. It also helps understand the impact of different types of
ground features on environmental quality and help urban areas achieve the goal of sustainable de-
velopment most effectively.

Study area and research methods

The study area was selected as the Taipei Living Circle in the northern part of Taiwan Island.
This area is located in the northern part of Taiwan Island, northwest of the Pacific Ocean. Geo-
graphical location 24°11'41"N~25°17'59"N, 120°59'10"E~122°01"26"E, including Taipei City,
New Taipei City, Keelung City and Taoyuan City (fig. 1). The total area is 3,677 km®. The climate
is subtropical: it is warm and humid all year round, with frequent typhoons (Chang et al., 2013;
Jimenez, 2018).

Taipei Living Circle

" Taipei \7 3 Jilong
Taoyuan

Xinbei

The main remote sensing data used in this article is the Landsat series of satellite images pro-
vided by the US Geological Survey (https://eros.usgs.gov/). According to the quality of remote
sensing data and cloud conditions, a total of 5 images ranging from 1988 to 2019 were selected. In
the period of image data, the selected remote sensing image is of good quality with no cloud cov-
erage or the cloud coverage is less than 5%.

Among them, Landsat 5 data were selected in 1988, 1995, and 2007. Images of 2018, 2019
were acquired from Landsat 8 data. Taiwan carries out a new round of cultivation every February
and July-August, at this time the characteristics of the fields are most obvious. In order to better
extract the field information, we chose the remote sensing images from that period (table 1).

The images produced in the experiment are processed by ENVI and ArcGIS. Image feature
classification is provided by eCognition 9.01. SPSS Modeler 14 for satellite image data mining. In
eCognition 9.01, the preprocessed 1988, 1995, 2007, and 2019 remote sensing images are seg-
mented (Florence et al., 2011; Kurtz et al., 2012) and classified according to nine types of ground
features: coniferous forest, broad-leaved forest, bamboo forest, field, shrub, water, wetland, city,
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Table 1
Image data information in the study area

Years Satellite Sensor Resolution Date
1988 Landsat 5 ™ 30 1988.02.23
1995 Landsat 5 ™ 30 1995.07.20
2007 Landsat 5 ™ 30 2007.07.21
2019 Landsat 8 OLI 30 2019.07.22

grassland, and bare land. General training sample data sets are used. SPSS Modeler 14 is used to
implement data mining. We used the C5.0 model with the Boosting algorithm and set the number
of experiments to 10. The interactive verification was selected, and there were 5 folds selected to
train the training samples to generate a classification decision tree (Ma et al., 2015). In ENVI 5.3,
the decision tree is used to classify the data in 1988, 1995, 2007, and 2019.

The Remote Sensing Ecological Index (RESI) constructed in this paper is to extract the four
indicators of humidity, greenness, dryness, and heat from the four aspects of regional humidity,
vegetation coverage, surface exposure, and temperature from the remote sensing images to come
to the cities in the Taipei metropolitan area Ecological quality. Greenness, humidity, and heat are
used for normalized difference vegetation index (NDVI), humidity index (Wet), and land surface
temperature (LST), respectively. The land building index (IBI) and the soil index (SI) can respec-
tively express the construction land and bare land conditions. This study uses the average of the
two indicators to represent the dryness index (NDBSI). Calculation formula of humidity index is
as follows:

WET = Cipg + Cypg + C3pp + Capyir + Cspswirt + Cepswirz , (1)

In the formula pyz , pr, P5, PG, Pswiri, Pswir2 corresponds to the surface reflectivity of 4, 3, 1, 2,
5, and 7 bands in the TM image, and corresponds to the surface reflectivity of 5, 4, 2, 3, 6, 7 bands
in the OLI image, respectively. C;, C,, C;, C,, Cs, Cy - the coefficients are 0.0315, 0.2021, 0.3102,
0.1594, -0.6806, -0.6109 in TM images. In OLI images, they are 0.1511, 0.1973, 0.3283, 0.3407, -
0.7117, and -0.4559.

Green index calculation formula is as follows:

PNIR — PR

NDv[ =ENR PR 2
Pnir T+ PR @

Calculation formula of dryness index is presented below:

IBI + SI
NDBSI = —— 2~ > ©)
2
IBI = IBl,,;y, * IBl gy 4)
2psWIR1 Pe
IBl ;,, =——— — + -, (5)
min DswiRL + Prin Pnir(Pnir + PR) 0 + pswir
2psWIR1 DPe
IBlpgy =——————+ +pp)+——s (6)
max pswirL + Puin enir(Pnir + PR) 0 + pswirt

_ [(pswirt + pyir) — (Puir + PR)]

- [(pswirt + puir) + (owir + Pr)]

Formula for calculating the heat index is as follows:

L = gain * DN + basti , (8)
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NDVI — NDVI,,;,

Py = ’ o
"'~ NDVlyey — NDVls,; 9)
Esurface = 0.9625 + 0.0614P, — 0.0461P7 | (10)
Epuitding = 0.9589 + 0.086P, — 0.0671P} o
B(LST) = [ up T( ) down] - 02

LST = ks 273
i[5 T (13)

i [B(TS) + 1]

The L represents the sensor radiation value obtained by the image calibration of the 6th band of
the TM image and the 10th band of the OLI image through ENVI software radiation calibration.
DN is the pixel gray value, the gain is the gain value of the band, and bias is the offset value.
These three values are obtained through remote sensing image header files. Pyindicates vegetation
coverage.

NDVIs,; represents the NDVI value of the area without vegetation coverage, and the empirical
value is 0.05. NDVIy,, is the NDVI value of vegetation pixels, and the empirical value is 0.7.

Esurface AN Epuiiaing TEpresent the pixel specific emissivity of natural surfaces and urban areas,
respectively, and the water cell pixel specific emissivity takes a value of 0.995 (Yu et al., 2014).

B (LST) is the blackbody radiance value.

Lyp, Laown, T represents the upward radiance of the atmosphere, the downward radiance of the
atmosphere and the transmittance of the thermal infrared band.

Because there are many different standards for obtaining weight values, the final image results
will also be different, so this experiment uses principal component analysis to obtain the combined
value, which can determine the weight according to the value of the data itself. RSEI synthesizes
the contents of the four component indicators, and it can determine the only certain value at a cer-
tain time point after the change of the main component (Zhang et al, 2019).

RSEI ecological index formula is as follows:

RESIy — RSEly_min

RSEI = ’ (14
RSEIO—max - RSEIO—min

RESI, =1—PC1 | (15)
RSEI is the normalized remote sensing ecological index. RSEI) is the original ecological index at 1
pixel. RSEI .. and RSEI. i, these are the maximum and minimum values of the original ecolog-
ical index. PC1 is the load value of the first principal component.

In order to further analyze the ecological quality evaluation results, combined with the distribu-
tion characteristics of the RSEI index in northern Taiwan, the reclassification is used to divide the
RSEI values from 0-1 into equidistant and divided into five grades: poor, fair, average, good, and
excellent.

Based on the study of classification of the dynamic changes of the ecological quality in the Tai-
pei Living Circle, this paper makes further analysis of the causes of different ecological quality
changes. By combining areas with different ecological qualities in various years and land use
types, we explore the changes in land use types under different ecological qualities.

We carried out interpolation analysis and processing of RSEI remote sensing ecological quality
value images in 1988 and 2019. The remote sensing images we reclassified after the difference

138



processing in ArcGIS, and divided into five categories: 2, 1, 0, -1, -2. They represent ecological
quality significantly improved area, ecological quality improved area, ecological quality constant
area, ecological quality deteriorated area, and ecological quality significantly deteriorated area. By
combining the areas where different ecological qualities are located each year and the types of land
use, the changes in land use types under different ecological qualities are explored.

Results and discussion

Forests occupy the main part of Taipei Living Circle, of which deciduous forests are mainly
distributed in mountainous areas (fig. 2). The building area comprising cities, bare land, and grass-
land is growing year by year. It is mostly concentrated in the Taipei Basin and Taoyuan. Agricul-
tural areas comprising fields and shrubs have also increased. Building areas and agricultural areas
have increased by overlapping onto the areas originally covered with bamboo forests, deciduous
forests, and coniferous forests. Water and wetlands remain basically unchanged.

A} Feature Classification Map of Taipei Living Circle
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Fig 2. Maps of feature classification for 1988-2019
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According to calculations, the RESI values in 1988, 1995, 2007 and 2019 are 0.559, 0.571,
0.546, 0.396 (table 2). The larger the value, the better the quality of the ecological environment in
that year. The overall trend in the past four years has been a gradual decline. Based on the four-
year data, it can be seen that four ecological indicators have varying degrees of influence on the
final RSEI index. Among them, WET, NDVI, NDSI, and LST contributed more evenly to the final
results.
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Table 2
RSEI index parameter statistics

Date 1988 1995 2007 2019

Type Average SD Average SD Average SD Average SD
WET 0.722 0.021 0.775 0.018 0.716 0.030 0.642 0.021
NDVI 0.404 0.005 0.524 0.154 0.879 0.042 0.518 0.043
NDBSI 0.145 0.162 0.301 0.333 0.151 0.163 0.121 0.159

LST 0.251 0.283 0.255 0.284 0.207 0.218 0.259 0.294
RESI 0.559 0.059 0.571 0.067 0.546 0.078 0.396 0.117

RSEI ecological quality value is a way of expressing, evaluating, and judging the level of the
regional ecological environment. From the perspective of effect, the impact of land-use change on
the regional ecological environment mainly includes positive and negative correlations. Among
them, the positive correlation is mainly manifested in the improvement of soil quality. Bare land
and unused wasteland are converted into cultivated land and forest land by human activities. With
the improvement of water resources, the ecological habits of land plants have been further im-
proved (Nakamura et al., 2008). Vegetation coverage has been improved, thereby improving the
ecological quality of the natural environment. Correspondingly, the negative correlation mainly
includes land quality degradation, desertification, and salinization. The area of cultivated land, gar-
den land, or forest land is gradually reduced or replaced by non-permeable grounds such as urban
construction land and urban roads. Water resources pollution and over-exploitation, ecological
habits of land plants have further deteriorated, and the vegetation coverage has declined seriously.
As a result, the ecological quality of the natural environment deteriorates.

Table 3
RSEI level statistics

Date 1988 1995 2007 2019

Type Area, km? % Area, km? % Area, km? % Area, km? %

Poor 26,405 0.61 45,430 1.06 67,951 1.59 121,206 2.83

Fair 819,400 19.16 1,148,652 26.85 1,444,596 33.77 1,532,365 35.83
Average 3,329,216 77.83 2,458,707 57.49 2,442,375 57.11 2,362,187 55.22

Good 102,188 2.39 580,764 13.57 320,336 7.48 261,456 6.11
Excellent 87 0.01 43,743 1.03 2,038 0.05 84 0.01

It can be seen that most research areas found within the average interval in 1988, accounted for
more than 77% of the total area (table 3). Followed by the fair area, which accounted for about one
-fifth. The ecological excellent area and poor area account for a small proportion. The average in-
terval accounted for the largest proportion in 1995, exceeding 57%. Fair area and good area ac-
counted for 26.85% and 13.58% respectively. Ecological Excellent area and poor area account for
less. The average interval in 2007 is basically the same as the Average interval in 1995. The Fair
area has increased compared to before, with the ratio reaching one third. The good area is reduced
by 50%, and the total proportion is 7.5%. The poor region increased slightly, and the excellent re-
gion decreased slightly. The region with the largest share in 2019 is still the average region, ex-
ceeding 55%.

The fair area and poor area both increased slightly. The proportion of the good area and excel-
lent area has decreased. Comparing the four-year data, we can see that environmental quality has a
significant downward trend. Among them, the proportion of poor area and fair area is constantly
rising. The corresponding areas in the figure are concentrated on impervious surfaces such as ur-
ban roads and agricultural land such as farmland shrubs. Due to the advancement of urbanization,
the expansion of urban areas has led to a decline in the value of environmental quality in the re-
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gion. The average area has been declining continuously in the four-year period. There is also a
downward trend in good and excellent region types (fig. 3).

1988-2019 RSEI Of Northern Taiwan
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Fig 3. RSEI index area for 1988-2019

The average area occupies the largest area ratio in four years, and the proportion is more than
50%. The poor area and excellent area account for only a small percentage of the four-year data.
The area of change is mainly concentrated in the fair area and good area. According to the DEM
comparison of the study area, the areas with ecological quality changes are mostly concentrated in
plains or hills with a terrain of less than 500 m, which corresponds to changes in urban expansion.
The mountainous areas, which account for the largest proportion of the study area, basically main-
tain good ecological quality.

Through the analysis of the feature type transfer matrix of ecological quality significantly im-
proved area, improved area, constant area, deteriorated area, significantly deteriorated area, the
relationship between the ecological quality index and urbanization is obtained (fig. 4). In the eco-
logical quality improved area, broad-leaved forest occupies the largest proportion, indicating that
the area of broad-leaved forest plays an important role in ecological quality. At the same time, it is
found that although grassland, shrubs, and other areas are all green, their impact on ecological
quality is less than that of woodland. According to the invariable areas of ecological regions, the
mutual conversion between different types can reach a relative balance of ecological quality. Ac-
cording to the analysis of the ecological quality deteriorated area, the increase in the area of cities
and fields has a significant negative effect on ecological quality. Substituting shrub areas for forest
areas will slightly reduce the ecological quality. Cities have the most obvious response to ecologi-
cal quality. The main reason for the loss of wetlands and water bodies is the increase in the urban
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areas. The main reason is that most wetlands are located in low-altitude areas and the area is close
to the city. The area of water loss is mainly the area of shallow waters near the city.

" 1988-2019 RSEI Change Difference

A

Change difference
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20

Fig 4. RSEI change difference for 1988-2019

The mountains with higher altitudes are mostly covered by forest, among which broad-leaved
forests have a greater influence on the ecological quality than bamboo forests and coniferous for-
ests. And most of the broad-leaved forests are located in areas where human activities are limited,
making the broad-leaved forests basically unchanged. Part of the broad-leaved forest near the city
turned into shrubs. The reason is that it has become grassland and some trees have been replaced
with cash crops under the influence of urban development. The amount of bare land is reduced,
and it is transformed into an urban impervious surface, and its impact on environmental quality
remains basically unchanged.

The land use/land class maps of 1988 and 2019 years were combined using the spatial connec-
tion tool. We generated several matrix tables to estimate the ecological quality: significantly im-
proved area transition matrix (table 4), improved area transition matrix (table 5), constant area
transition matrix (table 6), deteriorated area transition matrix (table 7), and significantly deteriorat-
ed area transition matrix (table 8).

Table 4
Ecological quality significantly improved area
1988 . .
water | field city | grass wet- shrub decidu- | bam- conif- bare Output
land ous boo erous
2019
water 1557 809 0 0 6 0 0 18 1 2391
field 0 1 0 2 0 0 0 0 0 3
city 0 13 0 0 4 0 0 0 0 17
grass 0 0 0 0 1 228 38 0 0 267
wetland 0 1 4 0 0 0 0 0 0 5
shrub 0 3 2 0 1 3 1 0 0 10
deciduous | 320 363 287 128 0 23 381 84 0 1,586
bamboo 0 0 0 0 0 0 20 0 0 20
coniferous 0 0 0 0 0 0 9 10 0 19
bare 0 0 0 0 0 0 0 0 0 0
Input 320 ] 1,937 | 1,103 | 128 3 34 260 430 102 1
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Ecological quality improved area

Table 5

1988 . .
water | field city | grass wet- shrub decidu- | bam- conif- bare | Output
land ous boo erous
2019
water 3,900 | 1,513 11 310 295 535 74 4,150 4 10,792
field 4 15 4 4 22 0 1 0 0 50
city 1,706 | 296 22 21 98 54 27 18 6 2,248
grass 38 34 43 0 102 1,305 363 37 0 1,922
wetland 233 106 53 0 12 23 7 17 1 452
shrub 44 100 109 1 7 234 146 16 1 658
deciduous | 2,096 | 940 | 1,319 | 2,407 1 2,386 10,948 | 26,301 44 46,442
bamboo 14 1 2 32 0 7 5,934 374 0 6,364
coniferous 0 1 34 44 0 55 1408 317 0 1,859
bare 3 0 0 0 0 0 0 0 0 3
Input 4,138 | 5,378 | 3,088 | 2,521 343 2,977 9,493 11,883 | 30,913 56
Table 6
Ecological quality constant area
1988 . .
water | field city grass wet- shrub decidu- bamboo conif- bare Output
land ous erous
2019
water 495 | 1,226 63 114 445 1,913 391 2,273 9 6,929
field 83 684 318 169 905 448 684 18 291 3,600
city 515 941 1,987 | 941 6,748 6,226 4,669 561 329 22,917
grass 346 524 | 1,561 4 5,983 | 41,806 | 23,982 349 271 74,826
wetland 236 702 | 1,878 16 989 1,681 976 228 15 6,721
shrub 314 | 2,895 | 8,585 150 | 3,024 78,676 | 28,532 | 2,582 143 124,901
deciduous | 1,213 | 2,893 | 19,016 | 40,003 | 105 | 44,921 160,249 | 65,217 | 1,312 | 334,929
bamboo 63 16 294 1,342 1 1034 | 80,865 916 23 84,554
coniferous 3 0 162 819 0 287 37,157 3664 0 42,092
bare 0 0 109 9 0 44 79 2 0 243
Input 2,773 | 8,466 | 33,515 |44,707 | 4,358 | 61,356 | 24,885 | 223,149 | 72,144 | 2,393
Table 7
Ecological quality deteriorated area
1988 . co-
water | field city | grass Welt | shrub decidu- | bam- nifer | bare | Output
2019 land ous boo ous
water 2,650 | 6,925 | 320 1,427 | 2,586 965 303 940 109 16,225
field 225 19,665 | 5,840 | 12,363 | 33,384 3,430 1,619 568 | 2,565 | 79,659
city 1,815 | 36,768 19,257 | 41,462 | 80,033 | 13,839 | 8,549 953 | 8,553 | 211,229
grass 437 9,935 | 7,670 14 35,474 | 18,456 | 16,900 | 235 | 1,453 | 90,574
wetland | 2,106 | 11,103 | 17,089 | 31 11,920 4,544 2,619 639 579 50,630
shrub 1,987 | 35,668 | 28,617 | 782 |31,811 100,119 | 21,894 | 2,884 | 821 224,583
deciduous | 1,312 | 12,255 | 15,850 | 44,371 | 198 46,249 22,929 | 1,845 | 1,414 | 146,423
bamboo 24 27 77 360 4 408 3,015 20 15 3,950
coniferous 0 0 44 71 0 17 536 118 0 786
bare 0 0 83 34 0 22 14 7 0 160
Input 7,906 | 108,406 | 96,020 | 71,066 | 87,279 | 210,093 | 144,918 | 74,938 | 8,084 |15,509
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Table 8
Ecological quality significantly deteriorated area

1988 . .
water | field city | grass wet- shrub decidu- bamboo conif- bare Output
2019 land ous erous
water 884 770 49 323 608 97 10 96 35 2,872
field 468 13,406 | 2,048 | 9,513 | 21,983 | 1,685 299 357 1,758 | 51,517
city 4,830 | 40,731 4,559 |30,540 | 33,007 | 3,284 760 721 4,547 | 122,979
grass 272 | 7,309 | 1,415 10 9,705 1,886 373 117 136 21,223
wetland 847 | 4,553 | 3,197 0 3,116 417 38 117 149 12,434
shrub 1,107 [22,254| 2,832 36 3,700 1,535 191 371 111 32,137
deciduous | 839 | 4,827 | 932 | 1,602 51 2,795 236 155 77 11,514
bamboo 4 11 4 4 5 16 21 3 1 69
coniferous 0 0 0 1 0 0 49 10 0 60
bare 0 0 7 6 0 3 0 2 0 18
Input 8,367 180,569 | 22,563 | 8,305 |44,142| 71,233 | 8,974 1,919 1,937 | 6,814

In areas with the improved ecological quality, broad-leaved forests account for the largest pro-
portion, which indicates that the area of broad-leaved forests plays an important role in ecological
quality. At the same time, it was found that although grassland, shrubs, and other areas are also
green areas, their impact on ecological quality is less than that of woodland. Through unchanging
ecological regions, we know that the conversion between different types of characteristics can
achieve a relative balance of ecological quality to a certain extent. It can be seen from the analysis
of areas with degraded ecological quality that the increase in urban and field area has a significant
negative correlation with ecological quality. Substituting bush areas for forest areas will result in a
slight decline in ecological quality.

The remote sensing image was selected when the field had just been planted. During this peri-
od, the crops in the field have not fully grown, and the bare land constitutes a large area, which
will greatly reduce the ecological quality. The main reason for the loss of wetlands and water bod-
ies is the increase in urban areas. Most wetlands are located in low-altitude areas and the area is
closer to the city. The decrease in the water area is mainly observed in wet areas near cities.

High-altitude mountainous areas are mostly forests, and the number of broad-leaved forests and
their impact on environmental quality is greater than that of bamboo forests and coniferous forests.
Moreover, human activities in most broad-leaved forest areas are restricted, so broad-leaved for-
ests remain basically unchanged. The broad-leaved forest near the city was partially turned into
shrubs. The reason is that due to the impact of urban development, grasslands and some trees have
been replaced by cash crops. The number of bare lands has been reduced, and it has become an
impermeable surface of the city, which has basically no impact on environmental quality.

Conclusions

Through the Landsat 5/TM and Landsat 8/OLI images of Taipei Living Circle from 1988 to
2019, the RSEI model combined with the Feature classification map was used to quantitatively
evaluate the ecological quality and changes of Taipei Living Circle, and monitor the changes. An
analysis of the results leads to several conclusions.

1. Taipei Living Circle in 1988, 1995, 2006, and 2019, the remote sensing ecological index was
0.559, 0.571, 0.546, and 0.396 respectively. It showed a slight increase in the early period and a
downward trend in the later period. From an overall perspective, ecological quality shows a trend
of degradation.
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2. From the RSEI level statistics, the average accounts for the majority, exceeding 50%. The
comparison of data from 1988 and 2019 revealed that the fair area and poor area increased by
807,766, the average area decreased by 845,805, and the good area and excellent area increased by
102,275. Both the areas with a better environment and the areas with the worse environment have
increased, the average area accounting for the largest area has decreased, and the overall environ-
mental performance has decreased.

3. The forest area covered with coniferous forest, deciduous forest, and bamboo forest has re-
duced by 10% to 252,148 km?*. Agricultural land (fields and shrubs) decreased by 7.7% to 66,958
km?®. The water area comprising water and wetlands decreased by 18.2 % to 67,846 km”. The
building area comprising urban, grass, and bare land increased by 72.7% to 377,547 km®.

4. Through the transfer matrix of land-use types of different RSEI levels, it can be seen that for-
ests and water bodies have a positive effect on the environment, while agricultural building areas
have a negative effect on the environment. Forest has the greatest impact on the ecological index,
and the area of broad-leaved species determines the influence of the entire area. Although grass-
lands, shrubs, and other areas are also green areas, their impact on ecological quality is less visible
than that of forest land. Since the remote sensing image was taken at the sawing period, the vege-
tation in the field has not fully grown, and the reflected ecological index value is low.
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MONITORING OF FOREST ECOSYSTEMS DISTURBANCES IN MARI EL REPUBLIC

Jun Ma
Volga State University of Technology

Natural factors and anthropogenic impact frequently result in different levels of forest disturbances,
which have an important influence on forest resource management and climate change. Under the back-
ground of global warming, large-scale forest disturbance monitoring and its impact have become the
hotspot and the focus of research worldwide. Remote sensing can obtain large-area forest cover data on a
regular basis, thus becoming an important means of regular and continuous forest disturbance monitoring.
Forest monitoring based on time series data has become the main research method. Therefore, based on in-
depth analysis of the relevant methods of forest disturbance monitoring and their indexes, according to time
series analysis technique, the author carried out research in Mari El Republic to detect forest disturbances
from 10 Landsat images taken between 1985 and 2019. The vegetation index time series methods are
adopted to extract the forest disturbance information. Based on the spatial and temporal resolutions of re-
mote sensing data, the laws and driving factors of forest disturbance in the study area were analyzed. The
results show that from 1985 to 2019 the number of forest pixels in Mari-El Republic did not change much,
and the total area remained floating within a certain range. Forest disturbance pixel number and area of
disturbance have an increasing trend year by year, of which the most obvious increase is observed in the
period from 2007 to 201 1. Finally, the prospects for future research are discussed.

Keywords: remote sensing, Landsat data, forest disturbance, vegetation index, time series, change
detection.

Introduction

Forest is a type of land ecology system and an essential part of the Earth's biosphere. The car-
bon recycling and storage of forests play an important role in global land carbon cycle and climate
change (He et al., 2001; Schimel, 1995). Due to the occurrence of forest disturbance events such as
deforestation, fire (Kurbanov et al., 2017), drought (Millar, Stephenson, 2015) and insect out-
breaks (Kautz et al., 2017).The forest communities are replaced by sparse forests, low shrubs and
even grasslands, and the carbon originally stored in organisms is re-released into the atmosphere.
These events have changed the composition, structure and function of forest systems. It seriously
affects the ecological balance and stability of the region and to a certain extent affects the regional
and global carbon budget, and may have an impact on the global climate system.

Under the background of global warming, forest disturbance monitoring and its impact have
become the hotspot and the focus of research worldwide (Dale et al., 2000). Forest disturbance
monitoring research is of great significance for revealing the temporal and spatial evolution of for-
ests. It also provides basic theoretical and technical support for the global forest carbon sink esti-
mation research, and has become an important topic in the field of global change research (Huang
et al., 2010). The traditional forest resources and their changes are mainly based on ground sur-
veys, which have problems such as large workload, high labor intensity, high cost, long cycle, low
efficiency and poor timeliness. Moreover, the survey accuracy is not high enough to meet the
needs of today's monitoring of forest resource changes, especially for large-scale forest disturb-
ance monitoring. Remote sensing, with its wide coverage and repeatable access, can quickly moni-
tor changes that occur, plan forestry activities to care for young plantations, and improve forecasts
for the development of forest landscapes and territories (Kurbanov et al., 2010). It also plays an
important role in the monitoring of forest changes and disturbances, thus also addressing the above
stated problem.

Many experts and scholars have used satellite remote sensing technology to carry out a large
number of forest disturbance monitoring studies, and their methods are mainly divided into two
categories: threshold segmentation and image classification (Healey et al., 2005). Many research-
ers point to the need for long-term monitoring and development of technology to assess the eco-
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system response to natural disturbances (droughts and fires) from satellite image (Kurbanov et al.,
2011).

The purpose of this research is to provide the basis for the local forest protection, and to pro-
vide data and support method for forest resource inventory and management.

Study area and materials

The study area Of Mari E;Republic of Russia is located between 45°37' E and 50°12' E,
55°48' N and 57°20' N, where it occupies 23 thousand km2 (fig.1). The territory is a hilly plain
with elevation range from 45 to 275 m above the sea level. The climate is moderately-continental
with distinct and stable weather in winter and summer and variable weather in spring and fall. The
mean annual temperature varies from +2.20 C in the north-eastern part to +3.10 C in the south-
west. In recent years, winter months have been warmer than they used to be. The average amount
of precipitation is 450-500 mm, including 200-250 mm during vegetation period.

According to a forest resource study conducted in 2017, the forested area of Mari El Republic
covers 1,117 thousand ha (Vorobev, Kurbanov, 2017) and the forest cover is 55.4%. The main for-
est-forming species are pine (Pinus sylvestris), spruce (Picea Abies), birch (Betula pendula), lin-
den (Tilia cordata) and aspen (Populus tremula). The region can be subdivided into three ecologi-
cal zones: southern taiga, mixed forest and forest-steppe. The Volga River serves as the natural
western border of physiographic and natural conditions. This area has a high rate of forest cover-
age, and the forest disturbance has changed significantly since 1985 (Kurbanov et al., 2017).
Therefore, Mari El Republic serves as a good site for detecting changes in disturbance regimes
caused by natural and social conditions, as well forest management policies.

46° 0'0"E 47° 0'0'E 48° 0'0"E 49 ?'O'E 50° 0'0"E
L L 1
| ‘\
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Fig. 1. Location map of study area

Materials and Method

Remote Sensing Images. Landsat remote sensing data acquisition and processing selection dur-
ing 1985-2019, Landsat images with a spatial resolution of 30 m were used as the main data source
to extract forest disturbance information in the study area (Kurbanov et al., 2014). The image data
came from the USGS website. The study takes 3-5 years and selects the vegetation growth period
(June to early October). In some years, due to cloud coverage, the images are selected for 6 years.
A total of 10 scene images were selected as the source data (table 1).
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Table 1
Remote sensing data

No. Date Sensor Sources Level Cloud/%
1 10.08.1985 Landsat TM USGS LIT 0
2 30.05.1988 Landsat TM USGS LIT 0
3 25.05.1992 Landsat TM USGS LIT 0
4 05.07.1995 Landsat TM USGS L1T 1
5 11.06.1998 Landsat TM USGS LIT 0
6 29.05.2002 Landsat ETM + USGS LIT 2
7 27.05.2007 Landsat ETM + USGS L1T 1
8 01.07.2011 Landsat TM USGS LIT 0
9 19.05.2013 Landsat OLI USGS LIT 0
10 05.06.2019 Landsat OLI USGS L1T 2

Preprocessing of Remote Sensing Images. The Landsat ETM images obtained in 2007 have lost
data bands. In this paper, the ENVI5.3 plug-in “landsat_gapfill.sav” is used, and the missing bands
are repaired by interpolation using a mask. Since the reflectivity of the water body in the fourth
band of Landsat is very low, in order to eliminate the influence of directional reflection and pre-
vent the water body from interfering with the recognition of cloud shadows and conducive to radi-
ation calibration and atmospheric correction, before the cloud shadow recognition Water mask. In
the study, MNDWI (Wang et al., 2013) was used to extract water. For cloud pixels, this study uses
“Fmask 4.0” to extract and make a mask (Qiu et al., 2019). After grinding the cloud and cloud
shadow, a certain empty value was generated, which needs to be filled with time interpolation. The
Landsat calibration tool of 5.3 was used in conjunction with metadata and data header information
to convert the DN value of the Landsat TM/ETM+/OLI data into radiance values. In this radiation
calibration, the calibration coefficient proposed in the study (Chander et al., 2009) is used: The
Landsat 5/7/8 TM /ETM /OLI image data used in the research institute were using atmospheric
radiation correction software Landsat ecosystem disturbance adaptive processing system
(LEDAPS).The geometric correction uses the area gray matching method to automatically gener-
ate matching points, and adopts the quadratic polynomial method based on control points to com-
plete the geometric correction of the L2 product, so that the registration accuracy is controlled
within 0.5 pixels.

Forest extraction. Objects in object-oriented classification technology are represented as col-
lected adjacent pixels, and then through these objects we identify the spectral elements of interest
(Walker, Briggs, 2007). This method can make good use of high-resolution panchromatic and mul-
tispectral bands with rich color information, multi-segment texture, spatial and spectral infor-
mation segment and classification of features. The final classification result is highly accurate. At
the same time, the final classification result can also be output in the form of a vector. This paper
uses the “Feature Extraction” module to extract forest area information from high-resolution pan-
chromatic or multi-spectral data based on image space and image spectral characteristics, that is,
object-oriented.

Then the extracted 1985 forest area is used as a mask file for subsequent operations, which can
improve the detection accuracy and reduce the amount of calculation. The scale level of this study
is 40, the merge level is 85 and the attributes are >0.77 in the spectral mean. There are three pixel
values in the output raster image: 0, 1, 2, where the value 1 represents the forest area. The Forest
extractions are shown in fig. 2.
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Fig. 2. Forest extractions

Forest canopy change detection. NDVI is an important indicator reflecting the ecological envi-
ronment and one of the most widely used vegetation indices. However, under sparse vegetation
cover conditions, NDVTI is susceptible to soil background interference (Wulder et al., 2004), and
for dense vegetation, NDVI also exhibits saturation effects (Asrar et al., 1984). Maselli (2004)
used NDVI index to conduct long-term monitoring of forest conditions in Mediterranean protected
areas and analyzed changes in ecosystem function in the region. Its formula is as follows:

NDVI = MR’ (1)
NIR+R
where R is the reflection value of the red light band, and NIR is the reflection value of the near
infrared band.

In this study, the image difference method is used to extract the forest change information using
the NDVI interpolation results ANDVI of the two scenes before and after the image. The image
after the "i " scene image is the "p " scene image and the formula is:

ANDVI = NDVI; — NDVI,

Fig. 3. Examples of the ANDVI Images
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Data standardization. In order to minimize the impact of seasonal changes and directional re-
flection on the consistency of data, this study uses the mature forest standardization method
(Hansen et al., 2008) to standardize the bands and indices used:

L. = (I_IM) , (3)

T

where /, 1s the normalized band or index; /, and I, are the average and standard deviation of the
mature forest area in the band or index, respectively. Among them, the mature forest area is ex-
tracted using data, and according to the surface classification system, the part with a pixel value of
1 to 7 is selected as the forest pixel, including evergreen coniferous forest.

Broad-leaved forests, deciduous coniferous forests, deciduous broad-leaved forests, mixed for-
ests, dense shrub forests and sparse shrub forests, the rest non-forest pixels, and forest pixels are
extracted through image masks.

Ig

Vegetation change tracking algorithm. Vegetation Change Tracker (VCT) is an algorithm for
automatic monitoring of forest disturbances based on Landsat time series data at two-year inter-
vals. It fully utilizes time series information to automatically monitor and track land cover changes
(Li et al., 2009). Before tracking the vegetation change of the time series index, we selected 4 in-
dex values per year, calculated the average value of multiple pixels in the window according to the
size of the season setting window and extracted it to obtain the image. We drew the trajectory of
the time series of the meta-index, and then tracked the trajectory of the time series of each pixel
index, established decision rules according to the time characteristics of the forest change process
of the index, and finally determined whether there is forest disturbance in the pixel.

Exponential time series
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Fig. 4. Major steps and decision rules of VCT algorithm

1) When the forest is not disturbed, the normalized index value only fluctuates around the zero
value. The index of a pixel has been at a low (high) value in the time series, and within the set
threshold range, then the pixel did not disturb the forest during the monitoring period, and it was
determined as a continuous forest.
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2) The index value of non-forest pixels is high (low), the continuous non-forest pixels appear in
the time series as the index value is always at a high (low) value, and the index of a pixel is in the
set threshold in the time series. Outside the range, the pixel is determined to remain non-forest.
However, there may also be occasions where the index value is lower (higher) than the threshold
for a very small part of the time (Li et al., 2009). When this period of time does not continue for
more than a year, the pixel is considered to be a continuous non-forest pixel.

3) The recognition degree of farmland is low, and the index value often shows seasonal fluctua-
tions between high and low values in the time series. The seasonal change is more obvious. The
index value is higher in a short period of time. In order to distinguish farmland from disturbing
pixels, we used Judging by the time range of continuous high values (Zhao et al., 2015), when the
time of continuous high values is within one year, the pixel is considered to be farmland, that is,
non-forest pixels, otherwise it is a pixel that has been disturbed. The influence of seasonal fluctua-
tions of index values on the monitoring results of forest disturbances in the time series is reduced.

Extract forest disturbance information. The threshold segmentation method is a common meth-
od in image segmentation. This method uses the gray level difference between the target and the
background, and then divides the pixel level into different categories by setting a certain threshold,
and finally can separate the target and the background.

We used the histogram of the NDVI difference image to find the segmentation threshold. The
scene image is composed of multiple forest interference characteristic areas, and the histogram
presents a multi-peak phenomenon. Each peak corresponds to a forest interference characteristic
area, and the adjacent peak is divided by the valley point convex threshold, by visual method. A,
B, and C "inflection points" are visible in the histogram. The pixel values corresponding to these
three "inflection points" are segmentation thresholds. Therefore, the forest interference area is di-
vided into slight interference area, medium interference area and severely interference area. [MIN,
A]. Slightly disturbance zone, [A, B]: Medium disturbance zone, [B, C]: Severely disturbance
zone. After determining the segmentation threshold, we edited and output the gray segmentation
results to obtain statistical results, and finally used the 3x3 window to filter the small interference
spots, so as to obtain the final forest interference products year by year. Fig. 5, fig. 6 and fig. 7
take Histograms of NDVI 2019-NDVI 2013 as an example, In the example of Histograms of
NDVI 2019-NDVI 2013, MIN is -1.9894764, the value of point A is -0.1403, the value of point B
1s -0.0252, and the value of point C is -0.0109. The other NDVI difference images are defined ac-
cording to this method. The three "inflection points" A, B, and C have been obtained. The value of
the "inflection point" is obtained according to the visual observation of the histogram.

Histograms: NDVI_2019-NDVI1_2013.dat
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Fig. S. Histograms of NDVI 2019-NDVI 2013
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Histograms: NDVI_2019-NDVI_2013.dat
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Fig. 6. Detail histogram of NDVI 2019 - NDVI 2013 (1)
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Accuracy evaluation. In this study, the confusion matrix is used to obtain the detection accura-
cy. Among them, Overall Accuracy (OA) represents the combination of correctly classified pixels
divided by the total number of pixels (Fitzgerald, Lees, 1994). Kappa is a multivariate statistical
method for evaluating classification accuracy and it refers to the proportion of errors reduced by
the evaluated classification compared to completely random classification The classifier correctly
divides the pixels of the entire image into the number of pixels in a specific category and the ratio
of the total number of actual references in a specific category is called the mapping accuracy
(Manandhar et al., 2009). The ratio of the total number of pixels correctly classified into a specific
category is called user accuracy. The calculation is as follows:

0A = X1« 100% » (4)
N x;i—Y(xi+xyg)
Kappa = NZ-Y (i34 4) )
Py = ::T x 100% 6)
Uyj :;‘#wa% , (7)

i+

where OA is the overall accuracy; in the Kappa coefficient,  is the number of rows of the error
matrix; x; is the value on the i row and i column (main diagonal); x, and x,; are the sum and the
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sum of column #; N is the total number of samples; Py; is the cartographer accuracy of class i ; Uy,

is the user accuracy of class j .

Results and discussion

Accuracy evaluation results. The Mari-El forest disturbance monitoring confusion matrix from
1985 to 2019 is shown in table 2. The disturbance points are classified. The number of 326 refers
to 386 pixel points, but many non-disturbance points are sacrificed, and 46 are misclassified,
which is not stable enough. The overall accuracy for unbalanced classification in Table 3 is
99.26%, and the kappa coefficient is 0. 89, which meets the accuracy requirements of disturbance

monitoring.
Table 2
1985 to 2019 Mari-El forest disturbance monitoring confusion matrix
Number of pixels Disturbed point Undisturbed point
Disturbed point 326 46
Undisturbed point 53 10935
Table 3

1985 to 2019 Mari-El forest disturbance monitoring accuracy

Project Disturbed point Undisturbed point
Cartographer accuracy/% 87.19 99.13
User precision/% 89.2 99.45

Overall accuracy/%

99.26

Kappa

0.89

The methods proposed in this study aiming at the characteristics of low spatial resolution and
unbalanced classification can not only effectively improve the classification accuracy and solve

the problem of unbalanced classi-
fication. Iterative training can
also provide a more stable and
robust monitoring model. In the
accuracy test, the kappa coeffi-
cient 1s 0. 89. The plotter preci-
sion and user precision of the dis-
turbance point are 87.19% and
89.2% respectively, which shows
good stability. Both precisions of
the non-disturbance point are
above 99%, which guarantees the
user precision of the disturbance
point and a high kappa coefti-
cient.

Mari-El Forest Disturbance
from 1985 to 2019. According to
the analysis results of the forest
disturbance results map (fig. 8)
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Fig. 8. Mari-El Forest Disturbance Map from 1985 to 2019
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and the forest disturbance detail map (fig. 9) of the study area from 1985 to 2019, the forests of
Mari-El Republic have suffered a large disturbance.

/

Figure 9. Disturbance maps of Mari El: A) forest disturbance map; B) forest disturbance detail map;
C) Landsat CIR map in 2002; D) is Landsat CIR map in 2007

Through the map of forest disturbance changes from 1985 to 2019. It was estimated that from
1985 to 2019, the number of forest pixels in Mari-El Republic did not change significantly, and the
total area remained floating within a certain range. Forest disturbance pixel number and area of
disturbance have an increasing trend year by year, of which the most obvious increase is from
2007 to 2011. Area of forest disturbance is 1,117.49 km?, accounting for 8,42% of the total forest
area. The annual statistics is shown in Table 4. The highest disturbance accounted for 8.42% in
2007-2011, and the lowest disturbance accounted for 0.41% in 1988-1992.

Table 4
The area of forest disturbance changes in different years

Year Forest pixel number Area of Forest, km” | Area of disturbance, km2 %

2019 14587720 13128.95 375.43 2.86
2013 14405930 12965.34 446.45 3.44
2011 14743575 13269.22 1117.49 8.42
2007 14677232 13209.51 302.35 2.29
2002 14489206 13040.29 278.80 2.14
1998 14009290 12608.36 84.02 0.67
1995 14334776 12901.30 53.93 0.42
1992 14252640 12827.38 52.26 0.41
1988 14405260 12964.73 462.38 3.57
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Analysis of the forest disturbances in the Mari El from 1985 to 2019. The forests of Mari-El
continued to be disturbed from 1985 to 2019 (Table 5). The forest area transfers changed signifi-
cantly every two periods. This shows that during this period, the forest is still affected by various
factors, and disturbances continue to occur. From the time dimension, the area of forest transfer
from 2007 to 2011 is much larger. The loss of forest area is quite serious, mainly due to regional
disturbances. Field investigations revealed that a serious forest fire occurred in 2010.

After 2010, the area transferred from the forest showed a downward trend, and the area trans-
ferred to forest showed a rapid upward trend, indicating that the local forest restoration and envi-
ronmental protection policies after the disaster also have a certain inhibitory effect on forest dis-
turbances, which owe to the protection of forest and its ecological environment. Overall, the dis-
turbance mainly occurs when it is mainly logging and forest fires. Therefore, forest disturbance
mainly occurs near roads and water areas, and is constrained by terrain and traffic. Urbanization
has gradually become a forest disturbance in this area and the driving factor that cannot be ig-
nored.

Table 5
Forest disturbance changes in Mari-El from 1985 to 2019
Year Severely disturbance zone Medium disturbance zone Slightly disturbance zone
2019 0.61 1.18 1.89
2013 1.04 1.77 1.44
2011 4.03 1.18 0.49
2007 1.06 2.29 1.72
2002 1.07 2.64 2.09
1998 0.55 0.23 0.15
1995 0.76 1.87 1.40
1992 1.16 2.87 0.57
1988 1.89 1.37 2.13
18
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Figure 10. Trend map of forest disturbance Mari-El from 1985 to 2019
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Conclusions

This paper reviews and summarizes the update and development of remote sensing data, remote
sensing monitoring methods and monitoring indexes of forest disturbances. It summarizes and
compares several current disturbance monitoring indexes. And this study is also based on the
Landsat TM/ETM+/OLI remote sensing image with a resolution of 30 m, using object-oriented
classification method to extract forest area and NDVI image difference method. The research re-
sults show that the NDVI image difference extraction forest disturbance method has high accuracy
in extracting boreal forests, and has the advantages of simple and convenient operation, and is a
cost and time-effective method.

According to the interference monitoring results of Mari-El forests between 1985 and 2019, the
forests in this area are still continuously disturbed by various factors. Among them, the disturb-
ances were the largest in 2007-2011 and the least in 1988-2002. The area of thermal forests was
year by year. With the decreasing trend, the situation of forest protection is still severe. Since the
changes in forest area are closely related to regional and environmental protection policies, accord-
ing to the continuous increase in forest area in 2011, regional land use and environmental protec-
tion policies can suppress the extent of human activities that interfere with forests area. This re-
sults in protection and restoration of ecological environment.

The method of automatic extraction of forest samples used in this study can effectively and
quickly extract a large number of accurate forest samples, improve the detection accuracy and re-
duce the amount of calculation for the extraction of forest disturbance areas. It can be used in relat-
ed research. Although the NDVI image difference extraction method for forest disturbances has a
high efficiency and reliable basis for forest disturbance monitoring, it is prone to misdetect agri-
cultural land during the growth period of crops. So the next research needs to consider this aspect.
The method is optimized, and the thresholds of forest segmentation in different regions are differ-
ent. We need to refer to relevant literature and field research to continuously debug to find the op-
timal threshold, and further clarify the type of forest disturbance in the region and analyze the
causes of forest disturbance.

Recommendations

It can be seen that although forest disturbance remote sensing monitoring technology has been
well applied in recent years, there are still some shortcomings, and further research can be carried
out in the following three aspects:

1) Strengthening the comparative study of the disturbance monitoring index. Due to the fact
that the construction methods and theoretical basis of different indexes are different, the monitor-
ing effects for different types of disturbances are also different. Therefore, for the specific forest
disturbance types, it is helpful to further distinguish and identify the causes of disturbances by
comparing the monitoring effects of different indices.

2) Conducting long-term sequence disturbance monitoring analysis. For a long time, forest dis-
turbance research has been based on the study of changes in remote sensing data of Phase 2 or
Phase 3. It is not only time-consuming and laborious, but also has a significant reduction in accu-
racy during long-term sequence analysis, so that it cannot meet the application requirements. By
combining the long-term sequence disturbance analysis method with the appropriate disturbance
monitoring index, the monitoring efficiency of forest disturbance can be further improved.

3) Establishing and improving the disturbance monitoring model applicable to regional forests.
Frequent changes in forests have caused great disturbances in the estimation of terrestrial carbon
sinks, while most of the existing forest carbon stocks use forest resource inventory data, and forest
disturbance monitoring based on remote sensing data is underdeveloped. Therefore, it is of great
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theoretical significance and practical value to study the disturbance monitoring model applicable
to regional forests.

This project/achievement/thesis was funded by ""China Scholarship Fund''.
This article was completed under the careful guidance of my mentors prof. E.A. Kurbanov, who has

given me a lot of help in academic direction determination, topic selection, experimental methods, data
processing, theoretical analysis, and finalization of the thesis. During the two-year graduate career, un-
der the guidance of Professor Eldar Kurbanov, I have gained a lot of practical knowledge and tech-
niques, the morality and character of being a person, and more importantly, a serious attitude to every-
thing I do.

10.

11.

12

13.

14.

15.

16.

17.

18.

19

References

Asrar G.Q., Fuchs M., Kanemasu E.T., Hatfield J.L. Estimating absorbed photosynthetic radiation and leaf area
index from spectral reflectance in wheat 1. Agronomy journal, 1984, 76, 300-306. https://doi.org/10.2134/
agronj1984.00021962007600020029x

He C., Wang S., Xu J., Zhou C. Using remote sensing to estimate the change of carbon storage: A case study in the
estuary of Yellow River delta. International Journal of Remote Sensing, 2002, 23, 1565-1580. https:/
doi.org/10.1080/014311602753590887

Chander G., Markham B.L., Helder D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, T™M, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 2009, 113, 893-903. https://
doi.org/10.1016/j.rse.2009.01.007

Dale V.H., Joyce L.A., McNulty S., Neilson R.P. The interplay between climate change, forests, and disturbances.
Science of the total environment, 2000, 262, 201-204 https://doi.org/10.1016/S0048-9697(00)00522-2

Fitzgerald R.W., Lees B.G. Assessing the classification accuracy of multisource remote sensing data. Remote
sensing of Environment, 1994, 47, 362-368. https://doi.org/10.1016/0034-4257(94)90103-1

Hansen M.C., Roy D.P., Lindquist E., Adusei, B., Justice C.O., Altstatt A. A method for integrating MODIS and
Landsat data for systematic monitoring of forest covers and changes in the Congo Basin. Remote Sensing of Envi-
ronment, 2008, 112,2495-2513. https://doi.org/10.1016/j.rse.2007.11.012

Huang C., Goward S.N., Masek J.G., Thomas N., Zhu Z. and Vogelmann J.E. An automated approach for recon-
structing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment,
2010, /74,183-198. https://doi.org/10.1016/j.rse.2009.08.017

Healey S.P., Cohen W.B., Zhiqiang Y., Krankina O.N. Comparison of Tasseled Cap-based Landsat data structures
for use in forest disturbance detection. Remote sensing of environment, 2005, 97,301-310. https://doi.org/10.1016/
j.rse.2005.05.009

Kurbanov E.A., Vorobev O.N., Leznin S.A., Polevshikova Y.A. and Demisheva E.N. Assessment of burn severity
in Middle Povozhje with Landsat multitemporal data. International Journal of Wildland Fire, 2017, 26, 772-782.
https://doi.org/10.1071/WF16141

Kurbanov E.A., Vorobev O.N., Gubaev A.V., Lezhnin S.A., Nezamaev S.A., Aleksandrova T.A. Estimation of
reforestation on abandoned agricultural lands in Republic Mari El by satellite images. Vestnik MarGTU. Seriya
“Les. Ekologiya. Prirodopol ’zovanie, 2010, 9, 14-20.

Kurbanov E.A., Nureeva T.V., Vorobev O.N., Gubaev A.V., Lezhnin S.A., Miftakhov T.F. et al. Remote monitor-
ing of disturbances in forest cover, reforestation and afforestation of Mari Zavolzhje. Vestnik MarGTU. Seriya
“Les. Ekologiya. Prirodopol’zovanie. Ser.: Les. Ekologiya. Prirodopol’zovanie, 2011, 3, 17-24.

. Kurbanov E.A., Vorobev O.N., Gubaev A.V., Lezhnin S.A., Polevshchikova Yu.A., Demisheva E.N. Four decades

of forest research with the use of Landsat images. Vestnik MarGTU. Seriya “Les. Ekologiya. Prirodopol’zovanie,
2014, 7, 18-32.

Kautz M., Meddens A.J., Hall R.J., Arneth A. Biotic disturbances in Northern Hemisphere forests — a synthesis of
recent data, uncertainties and implications for forest monitoring and modelling. Global Ecology and Biogeogra-
phy, 2017, 26,533-552. https://doi.org/10.1111/geb.12558

Li M., Huang C., Zhu Z., Shi H., Lu H., Peng S. Assessing rates of forest change and fragmentation in Alabama,
USA, using the vegetation change tracker model. Forest Ecology and Management, 2009, 257, 1480-1488. https://
doi.org/10.1016/j.foreco.2008.12.023

Li M., Huang C., Zhu Z., Wen W., Xu D. and Liu A. Use of remote sensing coupled with a vegetation change
tracker model to assess rates of forest change and fragmentation in Mississippi, USA. International Journal of Re-
mote Sensing, 2009, 30, 6559-6574. https://doi.org/10.1080/01431160903241999

Maselli F. Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear
NDVI data. Remote sensing of environment, 2004, 89, 423-433. https://doi.org/10.1016/j.rse.2003.10.020
Manandhar R., Odeh 1.0., Ancev T. Improving the accuracy of land use and land cover classification of Landsat
data using post-classification enhancement. Remote Sensing, 2009, 1, 330-344. https://doi.org/10.3390/rs1030330
Millar C.I., Stephenson N.L. Temperate forest health in an era of emerging mega disturbance. Science, 2015, 349,
823-826. https://doi.org/10.1126/science.aaa9933

.Qiu S., Zhu Z. and He B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4—8 and Sentinel-2

imagery. Remote Sensing of Environment, 2019, 231,111205. https://doi.org/10.1016/j.rse.2019.05.024

158


https://doi.org/10.2134/agronj1984.00021962007600020029x
https://doi.org/10.2134/agronj1984.00021962007600020029x
https://doi.org/10.1080/014311602753590887
https://doi.org/10.1080/014311602753590887
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/S0048-9697(00)00522-2
https://doi.org/10.1016/0034-4257(94)90103-1
https://doi.org/10.1016/j.rse.2007.11.012
https://doi.org/10.1016/j.rse.2009.08.017
https://doi.org/10.1016/j.rse.2005.05.009
https://doi.org/10.1016/j.rse.2005.05.009
https://doi.org/10.1071/WF16141
https://doi.org/10.1111/geb.12558
https://doi.org/10.1016/j.foreco.2008.12.023
https://doi.org/10.1016/j.foreco.2008.12.023
https://doi.org/10.1080/01431160903241999
https://doi.org/10.1016/j.rse.2003.10.020
https://doi.org/10.3390/rs1030330
https://doi.org/10.1126/science.aaa9933
https://doi.org/10.1016/j.rse.2019.05.024

20.

21.

22.

23.

24.

25.

Schimel D.S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1, 77-91. https://
doi.org/10.1111/1.1365-2486.1995.tb00008.x

Vorobev O.N., Kurbanov E.A. Remote monitoring of vegetation regeneration dynamics on burnt areas of Mari
Zavolzhje forests. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa. 2017, 14, 2 https://
doi.org/10.21046/2070-7401-2017-14-2-84-97

Wang Y., Huang F.,Wei Y.. Water body extraction from LANDSAT ETM+ image using MNDWTI and KT trans-
formation. In 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20-22, June, 2013, IEEE, 1-
5. https://doi.org/10.1109/Geoinformatics.2013.6626162

Walker J.S.,Briggs J.M. An object-oriented approach to urban forest mapping in Phoenix. Photogrammetric Engi-
neering & Remote Sensing, 2007, 73, 577-583. https://doi.org/10.14358/PERS.73.5.577

Wulder M.A., Skakun R.S., Kurz W.A.,White J.C. Estimating time since forest harvest using segmented Landsat
ETM+ imagery. Remote sensing of environment, 2004, 93, 179-187. https://doi.org/10.1016/j.rse.2004.07.009
Zhao F., Huang C., Zhu Z. Use of vegetation change tracker and support vector machine to map disturbance types
in greater yellow stone ecosystems in a 1984-2010 Landsat time series. /[EEE Geoscience and Remote Sensing
Letters, 2015, 12, 1650-1654. https://doi.org/10.1109/LGRS.2015.2418159

159


https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
https://doi.org/10.1111/j.1365-2486.1995.tb00008.x
https://doi.org/10.21046/2070-7401-2017-14-2-84-97
https://doi.org/10.21046/2070-7401-2017-14-2-84-97
https://doi.org/10.1109/Geoinformatics.2013.6626162
https://doi.org/10.14358/PERS.73.5.577
https://doi.org/10.1016/j.rse.2004.07.009
https://doi.org/10.1109/LGRS.2015.2418159

OLIEHKA 3APACTAHUS 3AJIEXKEN SIPAHCKOI'O PAHOHA
KHPOBCKOM OBJIACTH IO CHYTHHUKOBBIM JAHHBIM

C.A. Jlexxnun
I10BOJKCKUY TOCYIaPCTBEHHBIN TEXHOJIOTUYECKUI YHUBEPCUTET

B cmamve npeocmasnenvt pe3yiomamsi uccied08anus 3apacmanus 3emens 3anedicell Apanckozo patio-
Ha Kuposckoui obnacmu 0pesecHo-KyCmapHUuK080ll pacmumenlbHOCMbI0, 8bINOJIHEHHO20 C UCHOb308AHUEM
CNYMHUKOBBIX CHUMKO8 8blcOK020 paspeutenus Sentinel. Bo mnoeux pezuonax Poccutickou @edepayuu, 6
mom uucie u 8 Kupoeckoil obiacmu, omcymcmaue axmyaivbHol Kapmospaguueckol 0CHOBbl A615emcs
JUMUMUPYIOWUM (DAKMOPOM NpU peuleHul 3a0a4 MOHUMOPUHea 3apacmaroouux 3emens. Ilpumenenue co-
BDEMEHHBIX MEXHONO2ULl NO360AAEN NPOBOOUNb MOHUMOPUHE OOILUUX MEPPUMOPULL 3AOPOUUEHHBIX Celb-
CKOXO3AUCMBEHHBIX Y200Ull C MUHUMATbHBIMU PUHAHCOBLIMU MpYyoo3ampamamu. [[isi onpedenerus niowa-
ou 3apacmanus 3anedcel 0pesecHO-KyCmMapHUKO8bIMU NOPOOAMU ObLIU OMOOPAHbL CIYMHUKOGbLe CHUMKU
8blCOK020 paspeutenus Sentinel-2 3a mpu nepuooa. eecennue chumku (Havano mas 2019 e.), iemuue cHum-
Ku (uronws 2019 2.) u ocennue chumku (cenmaopo 2019 2.). Cuumxu 6v11u 06ve0UHeHbl 8 KOMNO3UMbL C PaA3-
JUYHBIM HAOOPOM CNEKMPATLHBIX KAHAN08 (2 — cunull Kanaa; 3 — 3enenvlil; 4 — kpacHolil;, 8 — OMUNCHUL UH-
@pakpacHwlil) 0115 BbIAGNIEHUSL ONMUMATBHO2O COYEMAHUSA KAHATI08 U 8peMeHU CbeMKU. Temamuueckoe Kap-
moepaguposanie MOLOOHAKO8 OPEGECHbIX NOPOO HA 3AOPOULEHHBIX CeNbCKOXO3AUCMEEHHbIX 3eMAsX Apan-
CK020 patioHa 8vlAsUNI0 3HaYUmenbHble niowaou sapacmarnus Ha 2019 200. Haunyuuyro mounocms Kiac-
cugukayuyu nokasana NemHss Kapma 8 COUemanHuy CHeKmpaibHolx Kananog 8-4-2. /lona nucmeenHvlx Mo-
JOOHAKO8 Ha 3anexcax cocmasuna 16,35 % om obweti niowadu ceibCKoX035UCMEEHHbIX 3eMelb PAliOHd,
moz2oa Kaxk niowjadv Xeouuvix MoaooHaxkos — 11,31 %. Obwasa niowads cenbCKoX035AUCMEBEHHbIX 3eMelb
Apanckoeo pationa cocmaesuna 192380,1 2a, uacmo uz komopuix (okono 33 %) sapacmaem opesecnou pac-
mumenvHocmoio. 1Iposepka mouHocmuy memamu4eckol Kapmol 1ecO80300H0GICHUS HA UCCIE0YeMbIX 3eM-
JISIX NOKA3AA BbICOKYI0 MOYHOCMb Kaaccugpuxayuu, komopas cocmaeuna 77 %.

Knrouegwie cnosa: 3anesicu, cnymuukogvle CHUMKU, CHEKMPATbHBIU KAHAL, memamuiecKue Kapmal,
oyenxa mounocmu, Sentinel.

THE USE OF SATELLITE DATA IN THE ASSESSMENT OF REFORESTATION
ON THE ABANDONED AGRICULTURAL LANDS IN YARANSK DISTRICT
OF THE KIROV REGION

S.A. Lezhnin
Volga State University of Technology

The paper assesses the deposits on overgrown areas in Yaransk district of the Kirov region using mod-
ern Sentinel high-resolution satellite images. In many regions of the Russian Federation, including the Ki-
rov region, the lack of up-to-date cartographic data acts as a constraint when monitoring the overgrown
lands. The use of modern technologies is cost-effective and labour-saving particularly when monitoring
large areas. In order to determine the agricultural areas overgrown with trees and shrubs, high-resolution
satellite images Sentinel-2 referring to three time periods were selected: spring images (early May 2019),
summer images (July 2019) and autumn images (September 2019). The images were combined into compo-
sites with a different set of spectral channels (2 - blue channel; 3 - green channel, 4 - red channel; 8 - near
infrared) to identify the optimal combination of channels and shooting time. Thematic mapping of young
tree species on abandoned agricultural lands in Yaransk district revealed significant areas of overgrowth
in 2019. The best accuracy was achieved by the summer map with spectral channel combination 8-4-2. The
share of deciduous young stands on deposits amounted to 16.35% of the total area of agricultural land in
the district, while the area of coniferous young stands was 11.31%. The total area of agricultural land in
Yaransk district was 192,380.1 hectares, partly (about 33%) overgrown with woody vegetation. The accu-
racy of thematic reforestation map developed using satellite data was compared against the field data and
proved to be 77% accurate.

Key words: abandoned lands, satellite images, spectral channel, thematic maps, accuracy assessment,
Sentinel.
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Beenenne. B nacrosimee Bpemsi cucrema obecneueHust enepaibHBIX OPTaHOB HCIIOIHH-
TEJBPHOW BIIACTH, OPTaHOB HMCIIOJIHUTEIHHOU BIACTH CyOBekTOB Poccuiickoit denepanuu u opra-
HOB MECTHOTO CaMOYIIPABJICHUS ONEPATHBHONW MH(POPMAIUEH O COCTOSHUU CEIhCKOXO3HCTBEH-
HBIX 3€MeJIb BO MHOTUX CIy4asiX HE SIBJISIETCS] IOCTOBEPHOW M HE OTPa)KaeT pealbHOE COCTOSIHHE
3emenb. OOHIMPHBIE TEPPUTOPHH, 3aHUMAEMBbIE CEIbCKOXO03SHCTBEHHBIMU 3EMIISIMH, CIOXHO MO/I-
JAIOTCSl KOHTPOJIIO U3-32 OTCYTCTBUSA LU(POBBIX KapT CEIbCKOXO3AUCTBEHHON OCBOCHHOCTH TEp-
PUTOpHIl, HEPA3BUTON CETH MYHKTOB ONEPATHUBHOIO MOHUTOPHHIA, HA3eMHBIX CTAHLUH, B TOM
YHClie 1 METEOPOJIOTUYECKUX, OTCYTCTBHS aBHALIMOHHOW MOJJEPKKU BBUY BBHICOKOW CTOMMOCTH
ee cojepkaHus. BolBe/ieHUE CEIbCKOXO03SMCTBEHHBIX 3€MENb U3 MOJIb30BaHUS SBISETCS OJHUM U3
JOMUHHUPYIOIINX MPOIIECCOB U3MEHEHMs 3emienonb3oBanus B EBpone (Levers et al., 2018).

Cornacno maHHbIM Pocpeectpa, Tuiomaab 3aleKHbIX 3eMenb B KupoBckoi o6iacTi yBenuu-
nack ¢ 42,5 teic. ra B 2009 roxy 1o 51,8 Toic. ra B 2018 roay, 4ro cocraBiseT npuMepHo 1 ThIC. ra
B roj1 (O cOCTOSIHMM OKpY>Karomiei cTpepl... ). Ha 3Tux 3eMiisix B CHily pa3audyHOro poja mpupoi-
HBIX TPOILIECCOB U XO3SHUCTBEHHOW NEATEIHHOCTH YEJIOBEKa MPOMCXOAUT aKTHBHOE 3apacTaHUE
OOJBIIUX TEPPUTOPHM 3eMellb CeIbXO3Ha3HAueHUs (3eMenb 3amaca) JPEeBECHO-KYCTapHUKOBOM
pacturensHOCThIO. Bo MHOTHX peruonax Poccuiickoit denepanuu, B Tom yucie u B Kuposckoit
o0JacTu, OTCYTCTBHE aKTyallbHOM KapTorpaduyeckoii OCHOBBI HE JaeT BO3MOKHOCTH peIllaTh 3a-
a4l MOHUTOPUHTA TaKUX y4acTKOB. [[oaTOMy nmpuMeHeHHEe COBPEMEHHBIX TEXHOIOTUH, ITO3BOJIs-
IOIIUX MPOBOJAUTH MOHUTOPUHT HA OOJBIINX TEPPUTOPUSIX C MUHUMAILHBIMU (DPUHAHCOBBIMH TPY-
J03aTpaTam, sIBJISIETCS aKTyalbHOM 3a7a4ei.

[IpekpareHue cenbCKOX03sICTBEHHON ACSITEIIBHOCTH MOKET UMETh KaK IMOJIOKUTEIbHBIC, TaK
U OTpULIATENbHBIE PE3YIBTATHI, & MOCIEACTBUS PA3IMYAIOTCS B 3aBUCHMOCTH OT MECTONOJIOKEHUS
u macmrada (Milenov et al., 2014; Romo-Leon et al., 2014). HeratuBHble MOCIEICTBUS MOTYT
OBITh CBSI3aHBI C MPOJOBOJILCTBEHHON 0€30MacHOCTHI0O U MECTHBIM JKHU3HeoOecreueHneM, TOoraa
KaK MOJIOKUTEIbHBIE — CBA3AaHBI C 3()(PEKTOM paCTUTENHFHOTO MOKPOBA, KOTOPBIN MOBBIIIAET JETMO-
HUPOBaHUE YTIIepoJa 3a CUET yBENWYCHHsI APEBECHON OMOMACChl U CO3[IaHUSI HOBBIX MECT 00uTa-
HUS, TOOXOASIIUX s MHOTHX BunoB (aynsl (Levers et al., 2018).

HenaBuue uccnenoBanus mno 3Toid TeMe B EBpone mokasanu, 4To 00pa3oBaHHE 3aleKel B OC-
HOBHOM IIPOUCXOJUT B MEHEE MPOAYKTHBHBIX, OTAAIIEHHBIX M TOPHBIX y4acTKaX, a TAKXKe palioHax
C 3po3uel OYBbI WJIM UHBIMU HeOsaronpusTHeIMU yenoBusiMu (Song, 2019; Kolecka et al., 2016).
Hpyrumu (hakTopaMu 3TUX MPOIIECCOB SIBISIOTCS: MUTPALIMS HACEICHHS U3 CEITbCKOM MECTHOCTH B
ropojia, 0COOEHHOCTHU BJaJleHUsl 3eMJISIMU U Hanorosble pexxumsl (Stefanski et al., 2014). Tem He
Menee, Gradinaru u ap. (2015) yka3pIBaroT Ha COXpaHEHHUE CEIbCKOXO3SWCTBEHHBIX 3eMeNb BO-
KpyT TOPOJIOB, YTO OOYCIIOBJIEHO POCTOM II€H Ha 3eMIII0 M (pparMeHTaluel CenbCKOXO03sHCTBEH-
HBIX YTOJUH.

CoriacHO HEKOTOPBIM HMCCIIEOBAHUAM, €CTECTBEHHOE 3apallluBaHUE MOXKET 3aBUCETh OT IUIO-
aau OBIBIIIETO TOJIS M MOCJIEYIOIIETo UCToIb30Banus namHuu. [Ipu pasmepe yuactka ot 2 10 10
ra ryctora JepeBbeB cocTaBisieT 5-8 Toic. Ha 1 ra. [Ipu 3TOM hOopMUPYIOTCSI B OCHOBHOM COCHO-
BbI€ HACAXKIEHUS C IpUMeChi0 OepE3bl M MHOI/Ia CMENIaHHbIe ¢ IpeobnaganueM Oepéssl. [Ipu pas-
Mepe yqacTkoB 20-25 ra KOJIMYECTBO JIEPEBbEB CHUKAETCS NMpUMepHO 10 1,5-2 Thic. Ha | ra. Ecin
3apacTaHMe MallHU MPOUCXOIUT O€3 UCIOJIb30BaHMS €€ KaK MacTOMINa WK CEHOKOca, TO Ha Hel
YCHEIIHO HAYMHAIOT PaCTH COCHOBBIE HacaxaeHus. Eciu ke nmamiHs BIBOAUTCS U3 000poTa uepe3
MOCIEAYIOIEee UCTIONh30BAHNE €€ KaK CEHOKOC WIJIM MAcTOUIIE, TO OHA 3acCelNseTcs IMCTBEHHBIMU
MOpoIaMU: B OCHOBHOM Oepe3oit unu ocunoit (bensie u np., 2013; Jlexxnun, 2019).

Bepesa siBnsieTcst oHOM U3 HarboJiee aKTUBHBIX MMOHEPHBIX U TOYBOYITYUIIAIONIUX TOPO, OHA
HE YCTyMaeT MO MPOIYKTUBHOCTH XBOMHBIM MOPOJAaM, a BO MHOTHX CIIy4asiX U MPEBOCXOJUT UX
(bamamkeBuu, 2006; I'ynroe, 2006; Mockanenko, booposckuii, 2014). AKTUBHOE 3apacTaHue 3a-
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nexel 0epé30i TakKe MOATBEPKICHO MCCIIeIOBAaHUSAMU Ha Teppuropun PecryOnumku Mapuii D
(Kyp6anoB u ap., 2010; Kypbanos u ap., 2009; Jlexaun, My3yposa, 2019).

HecMmotps Ha TO, YTO MOHUTOPUHT UCIOJIb30BAHUS 3EMENb ABJISAETCS IPUOPUTETHBIM ISl MHO-
TUX HaIIMOHAJIBHBIX MPOrpaMM MOHHMTOPHHTA CElbCKoro xo3siictBa (Alcantara et al., 2012), no
HAaCTOSIIIETO BPEMEHU OTCYTCTBYIOT COIIACOBAHHBIE KAapThl 3€MEJIb 3araca U HaJeKHbIE MOIXO0/IbI
JUISL CO3/IaHUS TAKUX KapT HAa OCHOBE CITyTHUKOBBIX JIAHHBIX.

KaprorpadupoBanue 3a0poiIeHHbIX 3eMeb TPAAULIMOHHBIMUA METOJaMH (HarmpuMep, MoJieBble
paboTsl, olH(poBKa a3pOHOTOCHUMKOB) MOKET 3aHUMAaTh MHOTO BPEMEHH, ObITh 10POrOCTOSIIUM
1 TpeOOBaTh 3HAUYUTENILHON paboueil cuibl. B 7TOM KOHTEKCTE CITyTHHKOBBIE CHUMKHU OKa3bIBAIOT-
cst 6osiee HPPEKTUBHBIM UCTOUHUKOM JIaHHBIX. Pe3ylbTaThl MHOTHX MCCIIEIOBAaHHUN MTOKA3aJIH, YTO
3apacTarolye 3ajJeXu MOTYT ObIThb HaHECeHbl Ha KapTy C MOMOIIbI0 JaHHBIX /[33 ¢ TOYHOCTHIO
Beiie 80 %. bojee BbICOKast TOYHOCTD JTOCTUIAaeTCsl, KOIa B MOJIENN BKJIIOUEHBI CLIEHBI, OXBaThbI-
BaloIe Hadasio BereranmuonHoro nepuoja (Gradinarua et al., 2017).

Yin et al. (2018) u Prishchepov et al. (2012), koTopsie kapTorpadupoBaii 3a0pOIICHHBIC CEITb-
X03yroJipsi Mo cHUMKaMm Landsat, JOCTUTTIM OTHOCHUTENBHO BBICOKOM TOUHOCTH KJIaCCH(PUKAIUU:
91 u 80 % cootBeTcTBeHHO. OJTHAKO paclo3HABAHUE 3apAaCTaHUs Ha 3ayexkax — 0ojee TpyIoEMKUI
MPOLIECC IO CPABHEHUIO C JAPYTMMH BUJAMHU 3€MJIENOJIb30BAHUs, HAIPUMEpP, HAIUYUE PSAJIOM ca-
JI0B, JIECOMMTOMHHUKOB MJIM TApKOB MOXKET HETaTUBHO MOBIMATH Ha pe3ynbrathl (Wittke et al.,
2019; Creimienko, 2017).

B ampene 2018 r. B Muncensxo3e Poccun Oblia BBeJieHa B dKCIUTyaTanuio EnuHas denepaiib-
Has HH(QOPMAIIMOHHAS CUCTEMA O 3eMJISIX CEJIbCKOXO3SHCTBEHHOTO HA3HAUYEHUS M 3eMJISIX, HCIIOJIb-
3yEMBIX WJIM MPEIOCTABICHHBIX JISl BEJIEHUS CEIbCKOT0O XO35ICTBA B COCTaBE 3€MEJb UHBIX KaTe-
ropuii (E®@UC 3CH), onHoii 13 yacteit KOTOpO# cTail 610K paboThl ¢ JaHHBIMH JAUCTAaHIIMOHHOTO
souaupoBanus 3emnu ([33) (CryTHUKOBBIN MOHUTOPHHT. .., 2019). CymiecTBeHHast pojib MPH CO-
3nanun EOUC 3CH orBeneHa MCIOIB30BAHUIO TEXHOJIOTMM CIYTHUKOBOIO MOHMUTOpHHra. Tak,
onHoi u3 cocraBHbIX yacteit EOWC 3CH cran crnenuanu3npoBaHHbIi 070K pabOThI C JaHHBIMU
133, nonyuuBimii Ha3BaHue «AHanuTHK /133 EOUC 3CH» (bynanos u ap., 2018; Ko3zybenko u
ap., 2018). biiok pa3zpaboTtan Ha 6a3e CepBUCOB CIyTHUKOBOTO MOHUTOPHHTA PACTUTEIHLHOCTH Ce-
metictBa BET'A (JIynisn u ap., 2011), Bxoasmiero B coctaB LleHTpa KOJUIEKTUBHOTO TOJIb30BaHUS
CHUCTEeMaMHU apXuBaluu, o0paboTku u aHanu3a cinyTHUKOBBIX JaHHBIX LIKII « MKHW-MouuTopuHry».
OcHoBHOH 3amauell peann3oBaHHBIX B Onoke /133 QyHKuMil sSBIsSETCS ONEpPATUBHOE MOJIyUYCHHE
00BEKTUBHON MH(POPMAIIUU O COCTOSIHUU U UCIIOJIb30BAaHUU CEIIbCKOXO3SMCTBEHHBIX 3€Mellb U T0-
CEeBOB, a TaKKe BepU(UKAIUSA AHHBIX, MPEJOCTABIAEMBIX IO/IBEJOMCTBEHHBIMH MUHCEIbX03Y
Poccun yupexaeHusmu.

Heabio padoThl sBISIACH OIEHKA APEBECHO-KYCTAPHUKOBBIX MOPOJ, CHOPMHUPOBABIIMXCS
Ha 3anexax SpaHckoro paiioHa KupoBckoil 00IacTH ¢ MOMOIIBIO CITYTHUKOBBIX CHUMKOB Senti-
nel.

JIst MOCTHIKEHUS 1IeTTH OBLITH PeIIeHbI CISTYIOIINE 3a1a4u:

* TIPOBEJICHBI TIOJIEBBIE MCCIIEAOBAHUS C 3aKIaJIKaMU TeCTOBBIX y4acTkoB (TVY) Ha uccrnemyemoit
TEPPUTOPHH;

* CO3/IaHBl TEMATUYECKHUE KapThl 3apACTAIONINX 3aJIEHKEH;

* IPOBEJICHA OIIEHKA IJIOIIAIeH MOJIOAHSIKOB, POU3PACTAIOLIUX HA TEPPUTOPUU 3aJICKEN.

MeTosza HCCJICA0BAHUA BKJIIOYACT B ce0sl HEeCKOJIbKO 3TaIlloB: MNPpOBCACHHUC ITOJICBBIX

pabot, moa00p CIYTHUKOBBIX CHUMKOB Ha TEPPUTOPUIO UCCIICAOBAHUS, TPOBEICHUE TEMaTHYECKO-
ro KapTUPOBAHUS U OLIEHKY TOYHOCTH ITOJIY4EHHBIX KapT.
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Pacnionoxxenne TY Ha uccnemyemMol TeppUTOpHE OBLIO BRIOPAHO B pE3yNbTaTe aHAIN3a MaTe-
pHUAJIOB JIECHOW MHBEHTAPHU3aIlUU U KaJIaCTPOBBIX KapT, U3YYCHUS CITYTHUKOBBIX CHUMKOB M MaTe-
puanoB a’podoTtocremMkn. Kpome TOro, Cnoiap30BaIich KapTorpaguueckiue MHTEPHET-PECypPChI
(Aunexc u Google xaptel, Bing maps). [IpensapurenbHbiii 0TOOP MECTHOCTH TSI 3aKJIAJIKH TTPO0-
HBIX TUIOMIAJIOK JIJISl OIICHKH 3apacTaHusl MPOBOIMIICS Ha OBIBIINX CEIbCKOXO3IHCTBEHHBIX 3EMIISIX,
KOTOPBIE PACIIONIOKEHBI Ha OOJIBIIIOM PACCTOSTHUU OT HACEJICHHBIX ITYHKTOB M HE OBLIHM B IOJIB30-
BaHUH B MTOCJICIHUE HECKOJILKO JIET WM JecaTuieTuit (puc. 1).

Puc. 1. PacnipesejieHue TeCTOBBIX Y4ACTKOB HAa TEPPUTOPUHU MCCJIeI0BAHUS

KoopanHaTsl TeCTOBBIX y4acTKOB (UKCHpoBaiach ¢ momomuisio GPS- npuemHuka, pazpabaTsl-
Bajicd a0pHC UX PACHOJOXKEHHUS OTHOCHUTENILHO OJMDKANIIero JIESCHOIO HACAXKIEHHsS WIM APYrHX
3aMETHBIX 00BEKTOB (JIOPOTH, JIMHUHU AJIEKTpoNepeaay, IOCTPONRKHU U T.I1.).

Jns onpeneneHus IMIOLIAAN 3apacTaHus MOJEH APeBECHO-KYCTapHUKOBBIMU MOPOJAMHU OBLIN
0TOOpaHbl CIYTHUKOBBIE CHUMKH BBICOKOTO pazpelieHust Sentinel-2 3a Tpu BpeMeHHBIX Mepuoja:
BeceHHUEe CHUMKHU (Hadano masg 2019 r.), netHue cuumku (uronb 2019 1.) M OCeHHUE CHUMKHU
(centsa6ps 2019 r.). Bece momobpanHble CHUMKH MPOILIH IPOLEAypy aTMoc(hepHOi U reoMeTpuye-
CKOU KOPPEKLUU.

B nanHoit paboTe nCIoab30BaTMCh KOMIO3UTHI € PA3IMYHBIM HAOOPOM CIIEKTPAIbHBIX KaHAJIOB
(2 — cuHuit kaHai; 3 — 3eneHbli; 4 — KpacHbIN; 8§ — OJIMKHUNA HH(QPAKPACHBII) [Tl BBISBICHUS OI-
TUMAaJIbHOT'O COYETaHUs KaHAJIOB U BPEMEHU ChEMKH (Tadu. 1).

Ta6umma 1
CauMmkn Sentinel-2, HCIIOJIb30BaHHBIE B HCCJIEI0BAHNH
YcnoBHOe 0003HaUeHNE CHUMKA Jara ceeMku CoueTaHue CIeKTPaIbHBIX KaHAJIOB
Spring_432 Maii 2019 4-3-2
Spring_842 8-4-2
Spring_843 8-4-3
Summer 432 Hrons 2019 4-3-2
Summer 842 8-4-2
Summer 843 8-4-3
Autumn 432 Centst6ps 2019 4-3-2
Autumn_ 842 8-4-2
Autumn 843 8-4-3

PesyabTaTsl uccaenoBanus. [lonobpaHHble CHUMKH OBbIJIM CHHTE3UPOBAaHBI B TPEX pas-
JUYHBIX COUETAHUAX CHEKTPATbHBIX KaHANOB (4-3-2, 8-4-2, 8-4-3) u BbIZIETICHBI B BUJIE MACKH T10
rpanule Spa"ckoro paiiona (puc. 2).
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Puc. 2. KomounupoBanue
CIEKTPAJLHBIX KAHAJIOB CIIEH
BeCeHHUX CHUMKOB Sentinel-2

Ha TeppuTopuio SIpanckoro
paiiona: a) 4-3-2, 6) 8-4-2, B) 8-4
-3

Jo Hauwama pabotr co
CHUMKaMU M3 TEPPUTOPUU
uccienoBaHus ObulM  UC-
KJIFOUEHBI BOJIHbIE OOBEKTHI,
3eMJIM HACEJICHHBIX IyHK-
TOB U JiecHOro ¢onma. Ilo-
CJi€ MEepBOHAYAJIBHOM KJlac-
cuukanuu ObBUTH TOTydYe-
HBI KapThl S[paHckoro paio-
Ha, COCTOAIIME U3 25 Tema-
THYeckux KkiaccoB. Ilomo-
OpaHHOE KOJMYECTBO KJIac-
COB SIBJIIETCS ONTUMAJIBHBIM
JUIS  MaKCHUMAaJbHO JIOCTO-
BEPHOrO pa3JieeHus Kiac-
COB Ha3eMHOT'O TIOKpOBa Ha
JIECOBO30OHOBIICHUE U COO0-
CTBEHHO CEIbCKOXO035M-
CTBEHHBIE 3emMul. B moce-
JYIOIIEM BCE KIJIACChl TeMa-

TUYECKOU KapThbl pacupeac- Puc. 2. KomOuHupoBaHHE CNIEKTPATbHBIX KAHAJOB CLleH BECEHHUX
JISUIMCh Ha 4  KaTEeropuu: CHMMKOB Sentinel-2 na reppuropuio SIpanckoro paiiona:

P a) 4-3-2, 6) 8-4-2, B) 8-4-3
JICCHBIC Y4YaCTKH, HC BXOI-

e B JecHoM (oHz; oOpabaTeiBaeMble CEIbCKOXO3HCTBEHHBIE 3€MIIM; JINCTBEHHOE JIECOBO300-
HOBJICHHE U XBOWHOE JIECOBO300HOBIIEHNE. B citydyae ecnu kakoi-mu0o Ki1acc He MOT OBITh JI0CTO-
BEPHO OTHECEH K OJHOHM W3 KaTEerOpHid, TO JJIS HETO CO3/IaBajiach OTJENbHAs BEKTOpHAs Macka,
BHYTPH KOTOPOH OCYIIECTBIIsUIaCh AJONOJHUTENbHAS Kiaccu(uKanus ¢ BblieneHueM yxe 14 xiac-
coB. ITorom Bcero npoiecca TeMaTHUECKOT0 KapTorpadupoBaHusl CTAIHU KapThl JIECOBO30OHOBIIE-
HUS Ha 3a0pOIIEHHBIX CEbCKOXO035MCTBEHHBIX 3eMIIsiX SpaHckoro paiiona Kuposckoii o0nactu 3a
TPH BPEMEHHBIX NIEPHO/A U B TPEX COUETAHHSIX CIIEKTPAIbHBIX KaHAJIOB (puc. 3).

Kak BusHO U3 pricyHKa 3, OCHOBHAs 4acTh JIECOBO30OHOBJICHHUS Ha 3aJIE€KHBIX 3€MIIIX IPUXO-
JUTCSI Ha LIEHTPAJIbHYIO M IOT0-BOCTOYHYIO YacTh SpaHckoro paifoHa. IToT (HakT MOXKHO 00Bsc-
HUTH OOJIBIIIMM KOJMUYECTBOM B3POCIBIX JPEBOCTOEB HA ITOW TEPPUTOPHUHU, KOTOPHIE paHee BXOIHU-
JI1 B CEIbCKHE JICCHUYECTBA, HO B JAHHBI MOMEHT HE BXOJAT B cOCTaB JiecHOro (hoHma. OOceme-
HEHHE 3a0pOIICHHBIX TOJeH OOBIYHO MPOMCXOAMT BAOJH T'PAHMIIBI JIECHBIX HACAXKICHHH, TOTIA
KaK B CEBEPHOW M CEBEpO-3ala/JIHOM YacTsIX paiioHa TaKWX JECHBIX YYaCTKOB MEHBIIE, MO3TOMY
o0ceMeHeHHe ITHX 3a0pPOLICHHBIX 3eMelb MPOUCXOAUT B MEHbIIIECH CTETIeHH.

Hrorosoe pacnpezeneHue miomaeil moJy4eHHbIX TEMAaTHYECKUX KJIACCOB MO0 BPEMEHHBIM Ie-
pHoJaM MpeCTaBIeHO B TabuuIe 2.
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Pacnpenesnenue miomageii no reMaTH4eCKUM KjaccaM

Tabmuma 2

KomanuecTBo mukce-

IInomane kiacca,

% OT 001LEeH I0-

Ne Krnacc kapTh! e, T ra —_—
Spring_432
1 JIuctBennsie MomoaHskH (broad) 2411800 24118 12,54
2 XBoliHbIe MOJIOTHAKH (need) 1550394 15503,94 8,06
3 Oo6pabatsiBacmbie 3emiu (field) 12758866 127588,7 66,32
4 Jlec (forest) 1301746 13017,46 6,77
5 Oonaka (Oblako) 1215197 12151,97 6,32
Uroro: 19238003 192380 100,00
Spring_842
1 JIucTBennslie MosoaHskH (broad) 2707189 27071,89 14,07
2 XBolHbIe MOJIOAHAKH (need) 1839095 18390,95 9,56
3 Oo6pabatsiBaecmbie 3emiu (field) 11781356 117813,6 61,24
4 Jlec (forest) 1786453 17864,53 9,29
5 Oo6mnaxka (Oblako) 1123910 11239,1 5,84
Uroro: 19238003 192380 100,00
Spring_843
1 JIucteennsie Mmosoausaku(broad) 2372234 23722,34 12,33
2 XBoliHbIe MOJIOAHAKH (need) 1970523 19705,23 10,24
3 Oo6pabatsiBaecmbie 3emiu (field) 12194836 121948,4 63,39
4 Jlec (forest) 1503384 15033,84 7,81
5 Ooiaka (Oblako) 1197026 11970,26 6,22
Uroro: 19238003 192380 100,00
Summer 432
1 JIuctBennslie MmosoaHsku (broad) 6457054 6457054 33,56
2 XBoliHbIe MOJIOAHAKH (need) 631212 6312.12 3.28
3 Oo6pabatsiBaecmbie 3emitu (field) 7979557 7279557 37.84
4 Jlec (forest) 3908257 39082,57 20,32
5 Obnaxa (Oblako) 961933 9619,33 5,00
Hroro: 19238013 192380, 1 100
Summer 842
1 JIuctBennsie Mmonoausku (broad) 5970278 5272278 2741
2 XBoitHbie MONOTHIKY (need) 1132122 1132122 5.88
3 O6pabatsiBaeMble 3emun (field) 6835474 68354,74 35.53
4 Jlec (forest) 4565157 45651,57 23,73
> Obnaxa (Oblako) 1432982 1432982 7,45
Hroro: 19238013 192380, 1 100,00
Summer 843
1 JIuctBennsie Mmomoausku (broad) 2042140 29421 4 15.29
2 XBoitHbie MONOTHIKY (need) 126373 1263.73 0.66
3 Oo6pabatsiBaeMble 3emutn (field) 11105271 111052.7 57.73
4 Jlec (forest) 4021329 4021329 20,90
> Obnaxa (Oblako) 1042900 10429 542
Hroro: 19238013 192380,1 100,00
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OxoHyaHue TaOIUIEI 2

Autumm 432
1 JIuctBennsie MomoaHsAkH (broad) 3848276 38482.76 20,00
2 XBoitasie MonogHAKH (need) 1360792 13607,92 7,07
3 Oo6pabatsiBacmbie 3emin (field) 11369839 113698,4 59,10
4 Jlec (forest) 2659106 26591,06 13,82
5 Oonaka (Oblako) 0 0 0
Hroro: 19238013 192380,1 100,00
Autumm_842
1 JIuctBennsie MomoaHskH (broad) 3144539 3144539 16,35
2 XBoliHble MOJOAHAKY (need) 2175072 21750,72 11,31
3 Oo6pabatsiBaembie 3emin (field) 9397237 93972.37 48,85
4 Jlec (forest) 4060229 40602,29 21,11
5 O6mnaka (Oblako) 460936 4609,36 2,40
Hroro: 19238013 192380,1 100
Autumm_843
1 JIuctBennsie MosoaHskH (broad) 922521 922521 4,80
2 XBotiiHbie MoJoaHsAKH (need) 2090383 20903,83 10,87
3 Oo6pabatsiBaembie 3emin (field) 13373111 133731,1 69,51
4 Jlec (forest) 2381236 23812.36 12,38
5 O6mnaka (Oblako) 470762 4707,62 2,45
Hrtoro: 19238013 192380,1 100

Kak BugHO 13 TabmuIs! 2, pa3dpoc miomaaeii KIaccoB 3aMETEeH 1ake BHYTPU OJHOTO BpEeMeEH-
HOTO MepHoJa JIsl Pa3HbIX COYETAHUNA TEMATHUECKUX KJIACCOB. DTO OOBSICHUMO TE€M, UYTO pa3HbIE
CHEKTpalibHbIE KaHaJbl MO-Pa3HOMY OTOOPAXKAIOT CHEKTPaIbHbIE XapaKTEPUCTUKHU PACTUTEIHHO-
cTU. B HEKOTOPBIX ciiydasx HaOI0MaeTCs 3HAYUTEIBHOE MEePEMENTUBAHNE MOJIOIHIKOB C TYCTOM
TPaBSHUCTOW PACTUTEIBHOCTHIO. B 1€OM JJi1 BECEHHETO Meproja IUIOmaab 00padaThIBaeMbIX
3emMenb Kojeonercs ot 61 1o 66 % ot obmiei miomaay creHsl. J[oJs JTeCHBIX HacaKICHUH 3aHH-
Maet oT 6 10 9 %. Jlosie TMCTBEHHBIX MOJIOAHSAKOB MeHsieTcst OT 12 1o 14 %, a XBOWHBIX — OT 8 110
10 %.

Jlns neTHero mepuojia TakKe XapakTepHO Ipeodiaganue 00padbaTbIBaeMbIX 3eMeb, OIS KOTO-
pbIx Konebaercs ot 37 1o 57 %. Jleca 3aHuMaroT cootBeTcTBeHHO OT 20 10 23 %. Jlons TUCTBEH-
HBIX MOJIOJIHSIKOB Bapbupyet oT 15 1o 27 %, Toraa Kak 07 XBOMHBIX MOJIOAHSAKOB — OT 0,66 10 3
%.

JlanHble TaOMUIBI 2 MOKA3bIBAIOT TAKXKE, YTO HA JISTHUX CHUMKaX MJET 3HAYUTEIbHOE TIepeMe-
[TUBAaHUE TEMAaTUYECKUX KJIACCOB, B OCOOCHHOCTH JMCTBEHHBIX MOJIOJHSKOB M CEIhCKOXO3SM-
CTBEHHBIX 3€MeJlb. ITO OOBSACHSIETCS TEM, YTO BO BpeMs aKTUBHOM BETeTAI[UU CIIEKTPAIbHBIE CUT-
HATypbl TPaBIHUCTON PACTUTEIHLHOCTH M JINCTBEHHBIX MOJIOIHSIKOB JJOCTATOYHO OJIM3KH T10 3HAYE-
HUSIM.

Jlnst oceHHero nepuoja Joisi 00padaTeiBaeMbIX 3eMelb BapbupyeT oT 48 mo 69 %, mons nec-
HBIX HacaxkaeHUH — oT 12 1o 21 %, nonst TMCTBEHHBIX MOJIOAHIKOB — OT 4 110 20 %, a 101 XBO¥-
HBIX MOJIOJHAKOB — OT 7 110 11 %.

J171s1 OLleHKH TOYHOCTH TTOTYYE€HHBIX TEMAaTHYECKHX KapT ObLIO HCIOIB30BaHO 177 TECTOBBIX
y4acTKOB. J{71s1 ornpeiesieHusl TOYHOCTH COOTBETCTBYIOIIETO KJTacca KOJIMYECTBO KIIACCUDUITUPO-
BaHHBIX MTUKCEJeH ObLJI0O OTHECEHO Ha 00111ee KOJIMYECTBO MUKCENIEH COrJIaCHO TECTOBBIM JIaHHBIM.
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[Tony4yeHHbIC 3HAYCHHUS TTOKA3bIBAIOT, HACKOJILKO BEPOSTHO, YTO JTAHHBIH KJIacC COBIMAJACT C pe-
3yJnbTaTaMu Kiaccudukanuu (tadm. 3).

Tabmuna 3
To4HOCTD MOTYy4YeHHBIX TEMATUYECKHX KapT
TemaTnueckas kapra OO01ast TOYHOCTH Koa¢ppuuunent Kanmna JloCTOBEpPHOCTH KapThI

Spring_432 0,63 0,41 YMmepennas

Spring_842 0,65 0,46 YMmepennas

Spring_843 0,62 0,38 Crnabas
Summer 432 0,65 0,47 Ymepennas
Summer 842 0,77 0,69 3HaunTeNbHAS
Summer 843 0,74 0,64 3HauuTeIbHAS
Autumm 432 0,67 0,58 YMmepenHas
Autumm_842 0,76 0,67 3HauuTeIbHAS
Autumm_843 0,70 0,61 3HauuTENHHAS

Kak BuHO U3 TaOuuUIbl 4, HAMITYYIIYIO TOYHOCTh TOKa3aja JICTHsSA KapTa B COYCTAHUH CIIEK-
TpaJbHBIX KaHAIOB 8-4-2 (puc. 4).

. forest
oblako

Puc. 4. TemaTnueckas kapta Summer_842

OO61mas TOYHOCTh ATOM KapThl cocTaBuia 77 %, 4TO ABISETCS JOBOJBHO BBICOKUM pe3yJbTa-
toM, kodpdunuent Kamma (0,69) Takke mokazal 3HAYUTEIBHYIO COTJIACOBAHHOCTH KapThI C
HaTYPHBIMHM JaHHBIMH. Takue TMOKa3aTelqu TOYHOCTH OOBSCHSAIOTCS TEM, YTO CKaHep CIyTHHUKa
Sentinel-2 cHUMaeT MECTHOCTH B JOBOJIFHO Y3KOM JMaIia30HEe BUIUMOIO U OJMKHEro nH(pakpac-
HOTO CIEKTPa, B KOTOPBIX CIIEKTPaJIbHbIE CUTHATYPHI JINCTBEHHBIX MOJIOJHIKOB U T'yCTOW TPaBSHU-
CTOH pacTUTENBFHOCTH MMEIOT OJU3KKE 3HAYCHHS, YTO NMPUBOJUT K BBICOKOMY IEPEMEIINBAHUIO
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3TUX KJaccoB. B TO ke Bpems TemaTHyeckue Kiacchl «Jlec» u «XBOWHBIE MOJIOJHSIKH» XOPOIIO
BBIJICTISIIOTCSL U3 OKPYXKAIOMINX 00BEKTOB HA3€MHOTO MTOKPOBA.

Bwmecte ¢ Tem, eciu He TIPOBOAUTH AUPHEPEHIUAINIO TEMATHUYECKUX KIACCOB MO JPEBECHBIM
opojaM, TO 00IIas TOYHOCTh TeMaTH4ecKoil KapTel coctaBUT 85 %, a koddduument Kanna —
0,78, 9yTO MOBHIIIIAET TOYHOCTH OIICHKH.

BoiBoabl. TemaTuueckoe kapTorpadupoBaHue MOJOJHIKOB JAPEBECHBIX MOPOJ Ha 3a0po-
IICHHBIX CEJbCKOXO3AMCTBEHHBIX 3eMisiX SpaHckoro paiioHa KupoBckod 007acTH MO3BOIHIIO
OTIPEACITUTh 3HAYUTEIbHBIC IO UX 3apacTaHus JPEBECHO-KYCTAPHUKOBOUN PaCTUTEILHOCTHIO
B 2019 romy. O0mas miomaas CeIbCKOXO3SHUCTBEHHBIX 3eMelb SIpaHCKOTo paiioHa CocTaBHIIA
192380,1 ra, 3HaunTenbHAs 4acThb KOTOPBIX (0K0JI0 33 %) 3apacTaeT JpEBECHON pacTUTEIIBHO-
CTBIO.

[TpoBepka TeMaTH4eCKOW KapThl JIECCOBO3OOHOBIJICHHUS IMOKa3ajia €€ BBICOKYIO TOYHOCTH, KOTO-
pas coctaBuna 77 %.

CoznanHasi TeMaThyecKas KapTa JIeCOBO30OHOBIICHHUS Ha 3anexax SpaHckoro paiiona Kupos-
ckoit oosactu 3a 2019 rox MOXKeT OBITh MCIIOJIB30BAHA JUISl JAIBHEHIIIEr0 MOHUTOPHHTA TIpoIiecca
3apactanus. E€ npumeHenne OyneT crocoOCTBOBATh ONEPATUBHOMY MOHHUTOPUHTY 3eMelb 3alie-
Keil. ATpuOyTHUBHBIE JaHHBIE KJIACCOB TEMaTHYECKOW KapThl MPEAOCTABISIIOT BO3MOXHOCTD JUIS
KOMIUICKCHOTO aHaJlM3a MPOIECCOB 3apacTaHUsl B COUYCTAHHH C IKOJOTHUYSCKUMHU, COIUATbHBIMHU
WJIM SKOHOMHYECKUMHU (PaKTOpaMH, U4TO JOJHKHO CIIOCOOCTBOBATH 00JIee TOYHOMY MPOTHO3UPOBA-
HUIO CUTYalluu B CEJIbCKOM Xo03siiicTBe KupoBckoii obsactu.

The European Commission support for the production of this publication does not constitute an en-
dorsement of the contents which reflects the views only of the authors, and the Commission cannot be
held responsible for any use which may be made of the information contained therein.

bubéanorpadguyeckuii cnucoxk

1. BamamkeBma HO.A. 3apacranue OBIBIINX CETLCKOXO3SIMCTBEHHBIX 3€MEINb IPEBECHON PaCTUTENLHOCTRIO // AKTY-
anpHbIe IPo0JIeMbl JecHoro komiuiekca. 2006. Nel3. C 4-6.

2. benses B. B., Kononos, O. /1., Kapaban, A. A., Crapuisiz, B. B. CocTosiHue npeBecHON pacTUTEIHLHOCTH Ha 3€M-
JISIX, BBIOBIBIIIMX M3 XO3SHCTBEHHOr0 000poTa B ApxaHrenbckoi oomactu // Becthuk CeBepHOro (ApKTHYECKOTro)
tdbenepansHOro yHUBepcuTeTa. 2013. Bem. 2. C. 5-11.

3. bymnanos K.A., Jlenucos I1.B., Kocorop C.H., Barnmsmmesa H.M., babak B.A., Tpomko K.A., MaptesiHoB A.C.,
Cepena U.U., JIynisa E.A., Tommua B.A., Bypue M.A. Moayibs paboThI ¢ JaHHBIMU TUCTAHIIHOHHOTO 30HIUPO-
Baums 3emun B Equnoit denepanbHoil HHOPMAIIMOHHON CHCTEME O 3eMJISIX CEIIbCKOXO3SIMCTBEHHOTO HA3HAYCHMUS
(E®UC 3CH) // 16-s1 Beepoc. otkpriTas kKoH(D. «CoBpeMeHHBIE TIPOOIEMBI TUCTAHIIMOHHOTO 30HIUPOBAHUS 3eM-
ym u3 kocmoca» (Mocksa, 12—16 Hos6. 2018): ¢6. Te3. Mocksa: UKW PAH, 2018. C. 3

4. Tynebe A.Sl. lunamuka (GUTOMACCHI M TOAWYHON MPOAYKIIMHM MOJOAHAKA Oepe3sl Ha 3aeXH B FOKHOTAC)KHOM
noazone (SpocnaBckas obsacts) // Bectank OpenOyprekoro roc. yH-Ta. [Ipunoxenue «buopaznoobpasue u 6mo-
pecypcb». 2006. Ne 4. C. 34-37.

5. Kozybenxo U.C., bernsapos P.P., Baugsimesa H.M., babak B.A., Jleancos I1.B., Tpomko K.A. Mcnonp3oBanne
MaTepuaoB JIUCTAaHIMOHHOTO 30HIMpoBaHus 3emin B Exunolt dexepanbHoll MHGOPMAIIMOHHON CHCTEME O 3eM-
nsX cenbekoxo3siictBenHoro HazHaueHus (EDOVC 3CH) // [IpumeHeHne CpeACTB UCTAHIIMOHHOTO 30HIUPOBAHUS
3eMin B CEIBbCKOM XO3iHCTBE: MarTepuanbl 2-i Bcepoc. Hayd. koH(]. ¢ MexayHapoaHeM ydactuem. CaHKT-
ITerepOypr, 2628 cent. 2018. Cankr-Ilerepbypr: ®IT'EHY A®U, 2018. C. 19-25.

6. Kyp6anos D.A., Bopoosés O.H., I'ybaeB A.B., Jlexxnun C.A., Hezamaes C.A., Anekcanaposa T.A. Onenka 3apac-
TaHuUs 3eMeNp 3anaca PecyOmuku Mapuii O JIECHOH PACTUTENBHOCTBIO MO CHYTHHUKOBBIM CHUMKaM // BecTHHK
MapI'TVY. — Momkap-Omna: Mapuiickuii rocy1apcTBeHHbIH TexHn4yeckuit yausepeuret. 2010. Ne 2(9). 2010. C. 14-
20.

7. Kyp6anos 3.A., Bopoosés O.H., Momkuna JI.C., I'ydbaes A.B., Jlexxann C.A., HezamaeB C.A. OueHka ¢guromac-
CBl OEPE3HSAKOB Ha OBIBIINX CEJILCKOXO3SHCTBEHHBIX 3eMIIsIX Mapuiickoro 3aBOJDKbS: IPOCTPAHCTBEHHOE pacIpe-
NENECHNUE U IMHAMUKA HAKOTUICHHS // MeXTyHapOJIHOE COTPYIHUIECTBO B JIECHOM CEKTOpe: OamaHc 00pa3oBaHus,
HAayKd W MPOM3BOJICTBA: MaTepHaIbl MeXayHapoaHoi koHpepenmuu. Momnkap-Ona: Mapuiickuii rocyaapcTBeH-
HBIA TexHundeckuil yauBepcuteT. 2009. C. 93-97.

8. Jlexamn C.A., My3ypoBa P.JI. Onenka BTOPUYHOH CyKIlecCMM Ha 3anexax Pecrmybmukn Mapuit O // JlecHble
SKOCHCTEMBI B YCIIOBUAX M3MEHEHHUs KIIMMAaTa: OMOJIOruyeckas IpOJyKTHBHOCTE M JIMCTAHIMOHHbIH MOHUTOPHHT:
Marepuaibl MexXyHapogHoi koHpepenuun. Momkap-Omna: [II'TY. 2019. C. 126-135.

169



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Jlynsan E.A., CaBun U.10., baptanes C.A., Tonnuu B.A., banamos U.B., [InotHuxos J.E. CnyTHUKOBBII cepBUC
MOHHUTOPHHIa cocTosiHUs pactuteabHocTH («BEI'Ay) // CoBpeMeHHBIC MPOOIEMBl AUCTAHIHOHHOTO 30HIUPOBA-
Hus 3emiu u3 kocmoca. 2011. T. 8, Ne 1. C. 190-198.

Mockanenko C.B., bobposckuit M.B. Bo3oOHOBNIEHHE NepeBbeB Ha OBIBIINX MMAaXOTHBIX 3eMIISIX B 3aIIOBEIHUKE
«Kamyxckue 3acekn» // bromnerens bpsackoro otaenenns PBO. 2014. Ne 1(3). C. 48-54.

O cocrosiHUE OKpyxaromeit cpensl Kuposckoit obmactu B 2019 roxy [DnektponHbIi pecype]. Pexxnm moctyma:
https://www.kirovreg.ru/econom/ecology/%D0%A0%D0%B5%D0%B3%D0%B4%D0%BE%D0%BA%D0%
BB%D0%B0%D0%B4%202019.pdf — 13.11.2020.

CIyTHUKOBBIH MOHHTOPHHT MOCEBOB O3UMBIX oA ypoxait 2019 r. B Equnoi denepanbHoit HGOpMAIMOHHON
cHCTeME O 3eMIIsIX celibckoxossticTBeHHoro HasHauyeHus (EOHC 3CH). — URL: https://mcx.gov.ru/ministry/
departments/dit/industry-information/sputnikovyy-monitoring-posevov-ozimykh-pod-urozhay-2019-g-v-edinoy-
federalnoy-informatsionnoy-sisteme-o-zemlyakh-selskokh/. — 28.11.2020

Cremenko E. A. Bo3MOXXHOCTH pacrio3HaBaHUS CEIHCKOXO3IWCTBEHHBIX YTOAHWH C WCIIONB30BAaHHEM METOIUKU
COBMECTHOH aBTOMAaTH3HPOBAHHON 0OpaOOTKH pa3HOCE30HHBIX MHOTO30HAJIBHBIX KOCMHYECKUX H300pakeHuit //
CoBpeMeHHbIE IPOOJIEMBI AUCTAHIIMOHHOTO 30HANPOBaHus 3emin u3 kocmoca. 2017. T. 14, Ne 5. C. 172-183.
Alcantara C., Kuemmerle T., Prishchepov A. V., Radeloff V. C. Mapping abandoned agriculture with multi-
temporal MODIS satellite data / Remote Sensing of Environment. 2012. Vol. 124. P. 334-347.

Gradinaru S. R., Kienast F., Psomas A. Using multi-seasonal Landsat imagery for rapid identification of aban-
doned land in areas affected by urban sprawl // Ecological Indicators. 2019. Vol. 96. Pt. 2. P. 79-86.

Yin H., Prishchepov A.V., Kuemmerled T., Bleyhl B. et al. Mapping agricultural land abandonment from spatial
and temporal segmentation of Landsat time series // Remote Sensing of Environment. 2018. Vol. 210. P. 12-24.
Prishchepov A. V., Radeloff V. C., Dubinin M., Alcantara C. The effect of Landsat ETM/ETM + image acquisi-
tion dates on the detection of agricultural land abandonment in Eastern Europe / Remote Sensing of Environment.
2012. Vol. 126. P. 195-209.

Kolecka N., Kozak J., Kaim D., Dobosz M. et al. Mapping secondary forest succession on abandonet agricultural
land in the Polish Carpathians // Remote Sensing and Spatial Information Sciences. 2016. Vol. XLI-BS8. P. 931-
935.

Levers C., Schneider M., Prishchepov A. V., Estel S. Spatial variation in determinants of agricultural land aban-
donment in Europe // Science of The Total Environment. 2018. Vol. 644. P. 95-111.

Milenov P., Vassilev V., Vassileva A., Radkov R. et al. Monitoring of the risk of farmland abandonment as an
efficient tool to assess the environmental and socio-economic impact of the Common Agriculture Policy // Interna-
tional Journal of Applied Earth Observation and Geoinformation. 2014. Vol.32. P. 218-227.

Romo-Leon J. R., van Leeuwen W. J. D., Castellanos-Villegas A. Using remote sensing tools to assess land use
transitions in unsustainable arid agro-ecosystems // Journal of Arid Environments. 2014. Vol. 106. P. 27-35.

Stefanski J., Chaskovskyy O., Waske B. Mapping and monitoring of land use changes in post-Soviet western
Ukraine using remote sensing data // Applied Geography. 2014. Vol.55. P. 155-164.

Song W. Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Ap-
proach // Sustainability. 2019. Vol. 11. P. 1-24.

Wittke S., Xiaowei Y., Karjalainen M., Hyyppa J., Puttonen E. Comparison of two-dimensional multitemporal
Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over
a boreal forest // International Journal of Applied Earth Observation and Geoinformation. 2019. Vol. 76. P. 167-
178.

References

. Balashkevich Yu.A. Zarastanie byvshikh sel'skokhozyaistvennykh zemel' drevesnoi rastitelnost'yu [Overgrowth of

former agricultural lands with woody vegetation]. 4 ktual'nye problemy lesnogo kompleksa. 2006. Ne13. P. 4-6.
Belyaev V. V., Kononov, O. D., Karaban, A. A., Staritsyn, V. V. Sostoyanie drevesnoi rastitel'nosti na zemlyakh,
vybyvshikh iz khozyaistvennogo oborota v Arkhangel'skoi oblasti [The state of woody vegetation on lands aban-
doned from economic circulation in the Arkhangelsk region]. Vestnik Severnogo (Arkticheskogo) federal'nogo
universiteta. 2013. Vyp. 2. P. 5-11.

. Bulanov K.A., Denisov P.V., Kosogor S.N., Vandysheva N.M., Babak V.A., Troshko K.A., Mart'yanov A.S.,

Sereda L.I., Lupyan E.A., Tolpin V.A., Burtsev M.A. Modul' raboty s dannymi distantsionnogo zondirovaniya
Zemli v Edinoi federal'noi informatsionnoi sisteme o zemlyakh sel'skokhozyaistvennogo naznacheniya (EFIS
ZSN) [Module for working with Earth remote sensing data in the Unified Federal Information System on Agricul-
tural Lands (EFIS ZSN)]. 16-ya Vseros. otkrytaya konf. «Sovremennye problemy distantsionnogo zondirovaniya
Zemli iz kosmosa» (Moskva, 12—16 noyab. 2018). Moscow: IKI RAN, 2018. P. 3

Gul'be A.Ya. Dinamika fitomassy i godichnoi produktsii molodnyaka berezy na zalezhi v yuzhnotaezhnoi podzone
(Yaroslavskaya oblast') [Dynamics of phytomass and annual production of young birch on fallows in the southern
taiga subzone (Yaroslavl region)]. Vestnik Orenburgskogo gos. un-ta. Prilozhenie «Bioraznoobrazie i bioresursy».
2006. Ne 4. P. 34-37.

Kozubenko 1.S., Beglyarov R.R., Vandysheva N.M., Babak V.A., Denisov P.V., Troshko K.A. Ispol'zovanie mate-
rialov distantsionnogo zondirovaniya Zemli v Edinoi federal'noi informatsionnoi sisteme o zemlyakh sel'skokho-
zyaistvennogo naznacheniya (EFIS ZSN) [Use of Earth Remote Sensing Materials in the Unified Federal Infor-
mation System on Agricultural Lands (EFIS ZSN)]. Primenenie sredstv distantsionnogo zondirovaniya Zemli v
sel'skom khozyaistve. Sankt-Peterburg: FGBNU AFI, 2018. P. 19-25.

170



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Kurbanov E.A., Vorob'ev O.N., Gubaev A.V., Lezhnin S.A., Nezamaev S.A., Aleksandrova T.A. Otsenka zar-
astaniya zemel' zapasa Respubliki Marii El lesnoi rastitel'nost'yu po sputnikovym snimkam [Assessment of over-
growth of the reserve lands of the Republic of Mari El with forest vegetation based on satellite images]. Vestnik
MarGTU. — loshkar-Ola: Mariiskii gosudarstvennyi tekhnicheskii universitet. 2010. Ne 2(9). 2010. P. 14-20.
Kurbanov E.A., Vorob'ev O.N., Moshkina L.S., Gubaev A.V., Lezhnin S.A., Nezamaev S.A. Otsenka fitomassy
bereznyakov na byvshikh sel'skokhozyaistvennykh zemlyakh Mariiskogo Zavolzh'ya: prostranstvennoe raspre-
delenie i dinamika nakopleniya [Assessment of the phytomass of birch forests on the former agricultural lands of
the Mari Trans-Volga region: spatial distribution and dynamics of accumulation]. Mezhdunarodnoe sotrudnich-
estvo v lesnom sektore: balans obrazovaniya, nauki i proizvodstva. loshkar-Ola: Mariiskii gosudarstvennyi
tekhnicheskii universitet. 2009. P. 93-97.

Lezhnin S.A., Muzurova R.L. Otsenka vtorichnoi suktsessii na zalezhakh Respubliki Marii El [Estimation of the
secondary succession in the deposits of the Republic of Mari El]. Lesnye ekosistemy v usloviyakh izmeneniya
klimata: biologicheskaya produktivnost'i distantsionnyi monitoring. loshkar-Ola: PGTU. 2019. P. 126-135.
Lupyan E.A., Savin 1.Yu., Bartalev S.A., Tolpin V.A., Balashov 1.V., Plotnikov D.E. Sputnikovyi servis moni-
toringa sostoyaniya rastitel'nosti («<VEGA») [Satellite service for monitoring the state of vegetation ("VEGA")].
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2011. T. 8, Ne 1. P. 190-198.
Moskalenko S.V., Bobrovskii M.V. Vozobnovlenie derev'ev na byvshikh pakhotnykh zemlyakh v zapovednike
«Kaluzhskie zaseki» [Renewal of trees on the former arable land in the Kaluzhskie Zaseki Nature Reserve].
Byulleten' Bryanskogo otdeleniya RBO. 2014. Ne 1(3). P. 48-54.

O sostoyanii okruzhayushchei sredy Kirovskoi oblasti v 2019 godu [On the state of the environment of the Kirov
region in 2019]. URL: https://www kirovreg.ru/econom/ecology/%D0%A0%D0%B5%D0%B3%D0%B4%D0%
BE%D0%BA%D0%BB%D0%B0%D0%B4%202019.pdf — 13.11.2020.

Sputnikovyi monitoring posevov ozimykh pod urozhai 2019 g. v Edinoi federal'noi informatsionnoi sisteme o
zemlyakh sel'skokhozyaistvennogo naznacheniya (EFIS ZSN) [Satellite monitoring of winter crops for the 2019
harvest in the Unified Federal Information System on Agricultural Lands (EFIS ZSN)]. URL: https://mcx.gov.ru/
ministry/departments/dit/industry-information/sputnikovyy-monitoring-posevov-ozimykh-pod-urozhay-2019-g-v-
edinoy-federalnoy-informatsionnoy-sisteme-o-zemlyakh-selskokh/. —28.11.2020

Stytsenko E. A. Vozmozhnosti raspoznavaniya sel'skokhozyaistvennykh ugodii s ispol'zovaniem metodiki
sovmestnoi avtomatizirovannoi obrabotki raznosezonnykh mnogozonal'nykh kosmicheskikh izobrazhenii
[Possibilities of recognition of agricultural land using the method of joint automated processing of multi-season
multi-zone satellite images]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017.
T. 14, Ne 5. P. 172-183.

Alcantara C., Kuemmerle T., Prishchepov A. V., Radeloff V. C. Mapping abandoned agriculture with multi-
temporal MODIS satellite data. Remote Sensing of Environment. 2012. Vol. 124. P. 334-347.

Gradinaru S. R., Kienast F., Psomas A. Using multi-seasonal Landsat imagery for rapid identification of aban-
doned land in areas affected by urban sprawl. Ecological Indicators. 2019. Vol. 96. Pt. 2. P. 79-86.

Yin H., Prishchepov A.V., Kuemmerled T., Bleyhl B. et al. Mapping agricultural land abandonment from spatial
and temporal segmentation of Landsat time series. Remote Sensing of Environment. 2018. Vol. 210. P. 12-24.
Prishchepov A. V., Radeloff V. C., Dubinin M., Alcantara C. The effect of Landsat ETM/ETM + image acquisi-
tion dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sensing of Environment.
2012. Vol. 126. P. 195-209.

Kolecka N., Kozak J., Kaim D., Dobosz M. et al. Mapping secondary forest succession on abandonet agricultural
land in the Polish Carpathians. Remote Sensing and Spatial Information Sciences. 2016. Vol. XLI-BS. P. 931-935.
Levers C., Schneider M., Prishchepov A. V., Estel S. Spatial variation in determinants of agricultural land aban-
donment in Europe. Science of The Total Environment. 2018. Vol. 644. P. 95-111.

Milenov P., Vassilev V., Vassileva A., Radkov R. et al. Monitoring of the risk of farmland abandonment as an
efficient tool to assess the environmental and socio-economic impact of the Common Agriculture Policy. Interna-
tional Journal of Applied Earth Observation and Geoinformation. 2014. Vol.32. P. 218-227.

Romo-Leon J. R., van Leeuwen W. J. D., Castellanos-Villegas A. Using remote sensing tools to assess land use
transitions in unsustainable arid agro-ecosystems. Journal of Arid Environments. 2014. Vol. 106. P. 27-35.
Stefanski J., Chaskovskyy O., Waske B. Mapping and monitoring of land use changes in post-Soviet western
Ukraine using remote sensing data. A pplied Geography. 2014. Vol.55. P. 155-164.

Song W. Mapping Cropland Abandonment in Mountainous Areas Using an Annual Land-Use Trajectory Ap-
proach. Sustainability. 2019. Vol. 11. P. 1-24.

Wittke S., Xiaowei Y., Karjalainen M., Hyyppé J., Puttonen E. Comparison of two-dimensional multitemporal
Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over
a boreal forest. International Journal of Applied Earth Observation and Geoinformation. 2019. Vol. 76. P. 167-178.

171



COJEPKAHUE

Thomas A. Mapping of land use / land cover of Klerksdorp—Orkney—Stilfontein—
Hartebeestfontein (KOSH) region for the years 2020 and 2019 using Sentinel-2 data.........

Zhang J., Liu G., Wang J. Extraction and modeling of individual sikang pine stem
based on point cloud data.......... ..ot
Papaiordanidis S., Minakou C., Gitas I.Z. On-the-fly land cover mapping using machine
learning with multispectral satellite imagery on Google Earth engine............................

Dudumashe N., Thomas A. Assessment of land surface temperature and drought indi-
ces for the Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region...................

Fang J., Sha J., Guo X., Sun G., Li Q. Comprehensive evaluation of ecological environ-
ment in Dazhangxi basin based on multi-source remote sensing data.............................

Kyp6anos J.A., Jexnun C.A., Bopoonés O.H., Menbumukos C.A., Jleprynos JI.M.,
Ban U., Tapacosa JI.B., CmupnoBa JI.H. Ananutuueckuii 0630p nybnukanuii B odia-
ctu npumenenus [[33 u I'UC nist oneHkr AMHAMHUKY PACTUTENBHOTO MOKPOBA. ... ...........

Shao Q., Huang C., Huang J.F. Forest phenological trends in the middle and high latitude
of the northern hemisphere......... ... e
Tepexun J.A. Ouenka u3MeHeHuil B yiecax ora CpegHepyccKoil BO3BBIUIEHHOCTH 110
CITYTHHUKOBBIM JIAHHBIM. .. ...ttt eutnt et ente ettt et ettt et et et et e e et et et et et e et e e eneneees

MaptsinoBa M.B., Cyaranoa P.P., I'adnenxakos A.K., Paxmarynaaun 3.3., OnuHunos
I'.E. Onenka 3apacTtaHus CelbCKOX035HCTBEHHBIX 3€MeJb JAPEBECHBI MU MOPOJAAMH T10
CIyTHUKOBBIM JaHHbIM Landsat Ha nmpumepe ydactka bakanunckoro paiiona PecryOmiuku
BaAIIIKOPTOCTAH . . ..ttt ettt ee e

Wang Y. Estimation of urban environment in Taipei living circle based on remote sens-
INE €COlOGICAl INACX. ... c.uti e

Ma J. Monitoring of forest ecosystems disturbances in Mari E1 Republic..................

Jlexnun C.A. Onenka 3apacranus 3anexen SdApanckoro paitona Kuposckoit odimactu
IO CITYTHHKOBBIM JTAHHBIM. . ... ututttntentneaeeetetteeeseesennessssssesseesssssseseesssesseessssnnnnnsnssssnns

172

6

29

37

46

69

91

112

119

128

135
147

160



CONTENTS

Thomas A. Mapping of land use / land cover of Klerksdorp—Orkney—Stilfontein—
Hartebeestfontein (KOSH) region for the years 2020 and 2019 using Sentinel-2 data.........
Zhang J., Liu G., Wang J. Extraction and modeling of individual sikang pine stem
based on point cloud data............oiiiiiiiiii e

Papaiordanidis S., Minakou C., Gitas I.Z. On-the-fly land cover mapping using machine
learning with multispectral satellite imagery on Google Earth engine............................

Dudumashe N., Thomas A. Assessment of land surface temperature and drought indi-
ces for the Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region...................

Fang J., Sha J., Guo X., Sun G., Li Q.Comprehensive evaluation of ecological environ-
ment in Dazhangxi basin based on multi-source remote sensing data.............................

Kurbanov E.A., Lezhnin S.A., Vorobev O.N., Menshikov S.A., Dergunov D.M., Wang
Y., Tarasova L.V., Smirnova L.N. Applications of remote sensing and GIS for estima-
tion of land use / cOver Change: @ TEVIEW .........uvuuiei it

Shao Q., Huang C., Huang J.F. Forest phenological trends in the middle and high latitude
of the northern hemiSphere............ooiiiiiii i e
Terekhin E.A. Assessment of changes in the forest of Central Russian Upland using
TEMOLE SENSING AALA. ...\ttt et et e e et e e e

Martynova M.V., Sultanova R.R., Gabdelkhakov A.K., Rakhmatullin Z.Z., Odintsov
G.E. Assessment of reforestation on abandoned agricultural lands using Landsat data
on the example of a site in the Bakalinsky region of the Republic Bashkortostan................

Wang Y. Estimation of urban environment in Taipei living circle based on remote sens-
INE €C0I0ZICAL TNACX .. ...ttt

Ma J. Monitoring of forest ecosystems disturbances in Mari El Republic..................

Lezhnin S.A. The use of satellite data in the assessment of reforestation on the aban-
doned agricultural lands in Yaransk district of the Kirov region....................cocii,

173

6

29

37

46

69

91

112

119

128

135
147



Hayunoe uzoanue

JIECHBIE OKOCHUCTEMbI

B YCJIOBUAX UBSMEHEHHUSA KJIIMMATA:
BUOJOTMYECKAS MIPOAYKTUBHOCTD U JUCTAHIMOHHBIA MOHUTOPUHT

Medwcoynapoonuiii cOOpHUK HAYUHBIX cmamell

Penaktop JI. C. Emenvanosa
Komnrerorepnas Bepctka C. 4. Jlexwiun
[TepeBoguux M. H. Kypormosa

ITonnucano k ucnonb3oBauuto 02.12.2020

[ToBOMKCKMI TOCYTapCTBEHHBIA TEXHOJIOTUUECKUN YHUBEPCUTET
424000 Nomxkap-Omna, . Jlenuna, 3

Pengaxnuonno-u3aarensbckui oraein INITY
424006 Homkap-Omna, yiu. audunosa, 17

[{eHTp yCTONYMBOTO yNpPaBJICHUS U JUCTAHIHOHHOTO MOHUTOPHHTA JIECOB
424000 Uomxkap-Ona, n. Jlenuna, 3



